#!/usr/bin/env python ################################################################################ ### parse script parameters ### ################################################################################ from optparse import OptionParser usage = "usage: %prog [options] [<NR_PARTICLES>] [<BOX_SIZE>] [<TEMPERATURE>]" arg_parser = OptionParser(usage = usage) arg_parser.add_option("-M", "--particles", action = "store", type = int, dest = "nr_particles", default = -1, help = "Nr. of particles (required!)") arg_parser.add_option("-L", "--box_size", action = "store", type = float, dest = "box_size", default = -1.0, help = "side box_size [A (angstrom)] of the simulation cube (required!)") arg_parser.add_option("-T", "--temperature", action = "store", type = float, dest = "temperature", default = -1.0, help = "temperature [K] to generate initial conditions (required!)") arg_parser.add_option("-o", "--output", action = "store", type = str, dest = "output", default = "task02.xyz", help = "output file path (default: 'task02.xyz')") arg_parser.add_option("-v", action = "store_true", dest = "verbose", default = False, help = "turn verbosity mode on (default: off a.k.a. silent)") # Parse command line arguments (as def. above) or store defaults to `config` config, args = arg_parser.parse_args() # overwrite options with positional arguments if supplied try: if len(args) > 0: config.nr_particles = int(args[0]) if len(args) > 1: config.box_size = float(args[1]) if len(args) > 2: config.temperature = float(args[2]) except ValueError as expression: arg_parser.print_help() print(f"Error: {expression}") exit(-1) else: # quick and dirty validation if not config.nr_particles > 0 \ or not config.box_size > 0.0 \ or not config.temperature > 0.0: arg_parser.print_help() print("Error: missing or illegal argument") exit(-1) ################################################################################ ### task 2 / generation of initial conditions ### ################################################################################ # note, load module _after_ processing script parameters (no need to load all # of the heavy numeric modules if only usage or alike is needed) import numpy as np import scipy from jax import jit, grad from molecular_dynamics import dump, energy, force, mass # Sample random positions in a 3D cube (TODO: make this not just uniform :-}) position = np.random.uniform(0.0, config.box_size, (config.nr_particles, 3)) # Sample particle velocities sd = np.sqrt(scipy.constants.Boltzmann * config.temperature / mass) velocity = np.random.normal(0.0, sd, (config.nr_particles, 3)) # center velocities velocity -= velocity.mean(axis = 0) # remember energy before optimizing for a low energy state initial_energy = energy(position, config.box_size) forces = force(position, config.box_size) initial_mean_forces = forces.mean(axis = 0) initial_mean_fnorm = np.linalg.norm(forces, axis = 1).mean() # optimize energy to find low energy system state using Conjugate-Gradients optim = scipy.optimize.minimize(energy, # objective func. jac = jit(grad(energy)), # jacobian x0 = position, # initial position args = (config.box_size, ), # further args method = "CG") # extract (and reshape) optimization result position = optim.x.reshape((config.nr_particles, 3)) # ensure all particles are in the box position = np.mod(position, config.box_size) # recompute stats after optimizing for low energy state final_energy = energy(position, config.box_size) forces = force(position, config.box_size) final_mean_forces = forces.mean(axis = 0) final_mean_fnorm = np.linalg.norm(forces, axis = 1).mean() # store state snapshot to file (default target file defined by script args) dump(config.output, position, velocity, config.box_size) # report stats (if requested by `-v` script argument) if config.verbose: print(f"Initial Energy: {initial_energy:.4e}") print( "Initial Mean Forces: {:.4e} {:.4e} {:.4e}".format(*initial_mean_forces)) print(f"Initial Mean ||Forces||: {initial_mean_fnorm:.4e}") print(f"Final Energy: {final_energy:.4e}") print( "Final Mean Forces: {:.4e} {:.4e} {:.4e}".format(*final_mean_forces)) print(f"Final Mean ||Forces||: {final_mean_fnorm:.4e}") print(f"Done: saved inital state to '{config.output}'")