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CHAPTER

Field Problems:
A Multidimensional Finite
Element Method

5.1 Field problems: Quasi-harmonic equation
The general procedures discussed in the previous two chapters can be applied to a
variety of physical problems. Here we shall deal with situations governed by the
general “quasi-harmonic” equation described in Chapter 2 and solved by finite ele-
ment methods in Chapters 3 and 4 for the one-dimensional case. Particular cases of
the equation are the well-known Laplace, Poisson, and Helmholtz equations [1–6].
The range of physical problems falling into this category is large. To list but a few
frequently encountered in engineering practice we have:

• Heat conduction
• Seepage through porous media
• Irrotational flow of ideal fluids
• Distribution of electrical (or magnetic) potential
• Torsion of prismatic shafts
• Lubrication of pad bearings, etc.

The formulation developed in this chapter is equally applicable to all, and hence
only limited reference will be made to the actual physical quantities. In all the above
classes of problems, the behavior can be represented in terms of a scalar variable
for which we will generally use the symbol φ as the physical variable describing
the behavior. However, in discussing heat conduction applications φ becomes the
temperature which we will denote by the symbol T . Similar changes will be made
when discussing other specific physical problems.

In general Cartesian coordinates we recall that the balance equation for the flux q
is given by [viz. (2.78)]

−
(
∂qx

∂x
+ ∂qy

∂ y
+ ∂qz

∂z

)
+ Q = c

∂φ

∂t
(5.1)

Following the steps described in (3.1) a weak form for the equation may be written
as

G(δφ, φ,q) =
∫
�

δφ

[
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d� = 0 (5.2)
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After integration by parts the weak form becomes

G(δφ, φ,q) =
∫
�

δφ

[
c
∂φ

∂t
− Q

]
d�+

∫
�q

δφ q̄n d�

−
∫
�

[
∂δφ
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∂δφ
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∂δφ

∂z

] ⎧⎨
⎩

qx

qy

qz

⎫⎬
⎭ d� = 0

(5.3)

where qn = nTq is the flux normal to the boundary with n the outward pointing
boundary normal. In the above we have also split the boundary term as∫

�

δφ qn d� =
∫
�φ

δφ qn d� +
∫
�q

δφ q̄n d� (5.4)

and assumed φ = φ̄ is satisfied such that we may set δφ = 0 on �φ . We also recall
from Section 2.3.2 that q̄n can include boundary radiation effects as

q̄n = q̄ + H(φ − φ0)

which we will use in some of the subsequent developments.

5.1.1 Irreducible form
To obtain an irreducible form we introduce a linear relationship to relate the flux to
the gradient of φ. The form was given in (2.83) as

q = −k ∇φ (5.5)

where k is a symmetric matrix of coefficients and

∇φ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂φ

∂x
∂φ

∂ y
∂φ

∂z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.6)

denotes the gradient of φ. We also recall that the relationship is known as Fourier’s,
Fick’s, or Darcy’s law depending on which physical problem we consider.

Introducing (5.5) into (5.3) for a general three-dimensional problem yields the
desired irreducible form

G(δφ, φ) =
∫
�

δφ

[
c
∂φ

∂t
− Q

]
d�+

∫
�

(∇δφ)Tk ∇φ d�

+
∫
�q

δφ
[
q̄ + H(φ − φ0)

]
d� = 0

(5.7)
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5.1.2 Finite element discretization
The finite element solution process follows the standard solution methodology intro-
duced in Chapter 3. For the quasi-harmonic equation approximates the trial function
using C0 shape functions we use

φ ≈ φ̂ =
∑

a

Na φ̃a = Nφ̃ (5.8)

in the weak formulation (5.7) together a similar expression for δφ.
We define the approximation to the gradient of φ as

∇φ̂ =
∑

a

(∇Na)φ̃a

=
∑

a

[
∂Na

∂x

∂Na

∂ y

∂Na

∂z

]T

φ̃a =
∑

a

ba φ̃a

(5.9)

where ba denotes the gradient matrix.

5.1.2.1 Two-dimensional plane and axisymmetric problem
The two-dimensional plane case is obtained by taking the gradient in the form

∇ =
[
∂

∂x

∂

∂ y

]T

(5.10)

and taking the flux as

q =
{

qx

qy

}
= −

[
kxx kxy

kyx kyy

] ⎧⎪⎪⎨
⎪⎪⎩
∂φ

∂x
∂φ

∂ y

⎫⎪⎪⎬
⎪⎪⎭ (5.11)

On discretization a slightly simplified form of the matrices will now be found with
ba in Eq. (5.9) replaced by

ba =
[
∂Na

∂x

∂Na

∂ y

]T

(5.12)

and the volume element replaced by

d� = hz dx dy

where hz is the slab thickness. Alternatively the formulation may be specialized
to cylindrical coordinates and used for the solution of axisymmetric situations by
introducing the gradient

∇ =
[
∂

∂r

∂

∂z

]T

(5.13)
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where r, z replace x, y to describe both the gradient and ba . With the flux now given by

q =
{

qr

qz

}
= −

[
krr krz

kzr kzz

] ⎧⎪⎨
⎪⎩
∂φ

∂r
∂φ

∂z

⎫⎪⎬
⎪⎭ (5.14)

the discretization is now performed with the volume element expressed by

d� = 2πr dr dz

5.1.2.2 Element matrices
Substituting (5.8) and (5.9) into (5.7), we obtain a typical element contribution as

Ĝe(δφ̂, φ̂) = δφ̃a

[
Ce

ab
˙̃
φb + He

abφ̃b − se
a

]
(5.15)

where

Ce
ab =

∫
�e

NacNb d�

He
ab =

∫
�e

bT
a kbb d�+

∫
�qe

Na H Nb d� (5.16)

se
a =

∫
�e

Na Q d�−
∫
�qe

Na(q̄ − Hφ0)d�

define the matrix contributions to each element.
Evaluating the integrals and assembling all elements leads to the set of standard

semi-discrete equations of the form

C ˙̃
φ + Hφ̃ = s (5.17)

to which prescribed values of φ̄ have to be imposed on boundaries �φ . We again note
that an additional “stiffness” is contributed on any boundaries for which a radiation
constant H is specified. Solution of the semi-discrete equations is considered in the
next section. However, for steady-state problems the first term may be ignored and
the problem solved to give

φ̃ = H−1s

After solution the same standard operations are followed to evaluate the fluxes using

q ≡ −k ∇φ = −k
∑

a

ba φ̃a (5.18)

The fluxes may be easily computed within the elements; however, it is often desirable
to obtain their values at nodes. This is best accomplished by the procedure to be
described in Section 7.8. However, here we summarize a simple averaging method.
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A least squares method may be used to project the element flux to nodal values using
a functional

�q = 1

2

∑
e

∫
�e

(
q	 − q̂(x)

)2 d� = minimum

where q is any component of the flux, q̂ is the element flux, and q	 is given in each
element by

q	 =
∑

a

Naq̃ = Nq̃

Minimizing the functional gives

Mq̃ =
∑

e

∫
�e

NTq̂(x)d� = f

where

M =
∑

e

∫
�e

NTN d�

The solution becomes trivial if we diagonalize M (see Appendix H) since then we
obtain

q̃ = M−1f

by simple divisions. An alternative to the above is the use of a local least squares on
each individual element followed by averaging at each node [7].

5.1.3 Shape functions for triangle, rectangle, and tetrahedron
To compute the element matrices given in (5.16) it is necessary to devise appropri-
ate shape functions. Here for two-dimensional problems we consider the simplest
form for elements of triangular and rectangular form. For three-dimensional prob-
lems the simple tetrahedral element form is also developed. In the next chapter we
generalize these to create families of elements for use in all problems for which C0
approximations are needed.

5.1.3.1 Triangle with three nodes
The finite element domain is defined by dividing � into a mesh of two-dimensional
triangular elements as shown in Fig. 5.1a. A simple set of C0 functions can be con-
structed from linear polynomials over three-node triangles as shown in Fig. 5.1b.
This element was first used to solve a variational equilibrium problem by Courant
[8]. Later Turner et al. used the element to solve plane elasticity problems [9].

The approximation in each triangle may be written as a linear function of the
Cartesian coordinates

φ̂e = α1 + α2x + α3 y

The parameters α1 to α3 may be evaluated in terms of the displacements at each
of the three vertices of the triangle. The vertices define the nodes of the triangle.
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FIGURE 5.1
Division of a two-dimensional region into triangular elements: (a) triangular mesh and
(b) geometry of triangle.

Accordingly, we write the set of equations⎧⎨
⎩
φ̃e

1
φ̃e

2
φ̃e

3

⎫⎬
⎭ =

⎡
⎣ 1 x1 y1

1 x2 y2
1 x3 y3

⎤
⎦

⎧⎨
⎩
α1
α2
α3

⎫⎬
⎭

where xa and ya are coordinates at the three vertices of the triangle. The inverse to
the coefficient matrix is given by⎡

⎣ 1 x1 y1
1 x2 y2
1 x3 y3

⎤
⎦−1

= 1

2�

⎡
⎣ a1 a2 a3

b1 b2 b3
c1 c2 c3

⎤
⎦

where

a1 = x2 y3 − x3 y2, b1 = y2 − y3, c1 = x3 − x2

a2 = x3 y1 − x1 y3, b2 = y3 − y1, c2 = x1 − x3

a3 = x1 y2 − x2 y1, b3 = y1 − y2, c3 = x2 − x1

and � = (x1b1 + x2b2 + x3b3)/2 is the area of the triangle. The meaning of the ba

and ca parameters is shown in Fig. 5.1b.
The above solution for the parameters αa permits the element interpolations to be

rewritten in terms of nodal parameters as

φ̂e =
3∑

a=1

1

2�

(
aa + ba x + ca y

)
φ̃e

a
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FIGURE 5.2
Shape function N3 for one element: (a) three-node triangle and (b) four-node rectangle.

Thus, the three shape functions for the triangle are given by

Na(x, y) = 1

2�

(
aa + ba x + ca y

)
, a = 1, 2, 3 (5.19)

The shape function for a = 3 is shown in Fig. 5.2a. With this definition it is clear that
we can write the set of approximations in each individual element as

φ̂e =
3∑

a=1

Na(x, y)φ̃e
a

Since these shape functions vary linearly along any side of a triangle, with identical
nodal values imposed, the same value of the function will clearly exist along an
interface between adjacent elements. We note, however, that the derivatives may not
be continuous between elements; consequently, the above form only provides C0
continuity.

5.1.3.2 Rectangle with four nodes
As a second example of two-dimensional shape functions we consider rectangles of
the form shown in Fig. 5.3. The rectangular element considered has side lengths of
2a and 2b in the x- and y-directions, respectively. For the derivation of the shape
functions it is convenient to use a local Cartesian system x ′, y′ defined by

x ′ = x − x0 and y′ = y − y0

where

x0 = 1

4

4∑
a=1

ya and y0 = 1

4

4∑
a=1

xa

in which x0, y0 are located at the center of the rectangle and xa, ya are coordinates
of the nodes. We now need four functions for each displacement component in order
to uniquely define the shape functions. In addition these functions must have linear



122 CHAPTER 5 Field Problems: A Multidimensional Finite Element Method

x

y

x ′

y ′

a a

b

b

1 2

34

FIGURE 5.3
Rectangular element geometry and local node numbers.

behavior along each edge of the element to ensure interelement C0 continuity. A
suitable choice is given by

φ̂e = α1 + x ′α2 + y′α3 + x ′y′α4 (5.20)

The coefficients αa may be obtained by expressing (5.20) at each vertex node
giving ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ̃e
1

φ̃e
2

φ̃e
3

φ̃e
4

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎣

1 −a −b ab

1 a −b −ab

1 a b ab

1 −a b −ab

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
α1

α2

α3

α4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

We can again solve for αa in terms of the nodal displacements to obtain finally

φ̂e = 1

4

(
1 − x ′

a

) (
1 − y′

b

)
φ̃e

1 + 1

4

(
1 + x ′

a

)(
1 − y′

b

)
φ̃e

2

+ 1

4

(
1 + x ′

a

) (
1 + y′

b

)
φ̃e

3 + 1

4

(
1 − x ′

a

) (
1 + y′

b

)
φ̃e

4

(5.21)

From (5.21) we obtain the four shape functions

N1 = 1

4

(
1 − x ′

a

) (
1 − y′

b

)
, N2 = 1

4

(
1 + x ′

a

) (
1 − y′

b

)

N3 = 1

4

(
1 + x ′

a

) (
1 + y′

b

)
, N4 = 1

4

(
1 − x ′

a

)(
1 + y′

b

) (5.22)

The shape function for N3 is shown in Fig. 5.2b.

5.1.3.3 Tetrahedron with four nodes
For three-dimensional problems a simple element is a tetrahedron with
four nodes as shown in Fig. 5.4. A C0 compatible displacement field is again given
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FIGURE 5.4
Tetrahedron element.

by a complete linear polynomial expansion as

φ̂e = [ 1 x y z ]

⎧⎪⎪⎨
⎪⎪⎩
α1
α2
α3
α4

⎫⎪⎪⎬
⎪⎪⎭ (5.23)

The parameters αa can be evaluated by evaluating (5.23) at each of the vertex nodes
of the tetrahedron. Accordingly we have⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ̃e
1

φ̃e
2

φ̃e
3

φ̃e
4

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎣

1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
α1
α2
α3
α4

⎫⎪⎪⎬
⎪⎪⎭

The inverse is expressed as

⎡
⎢⎢⎣

1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4

⎤
⎥⎥⎦

−1

= 1

6V

⎡
⎢⎢⎣

a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4
d1 d2 d3 d4

⎤
⎥⎥⎦

where

6V = det

⎡
⎢⎢⎣

1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4

⎤
⎥⎥⎦ (5.24a)
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and

a1 = det

⎡
⎣ x2 y2 z2

x3 y3 z3
x4 y4 z4

⎤
⎦ , b1 = det

⎡
⎣ y2 z2 1

y3 z3 1
y4 z4 1

⎤
⎦

c1 = det

⎡
⎣ z2 1 x2

z3 1 x3
z4 1 x4

⎤
⎦ , d1 = det

⎡
⎣ 1 x2 y2

1 x3 y3
1 x4 y4

⎤
⎦

(5.24b)

with the other constants defined by cyclic interchange of the subscripts in the order
1, 2, 3, 4. This gives the shape functions

Na(x, y, z) = 1

6V

(
aa + ba x + ca y + daz

)
, a = 1, 2, 3, 4 (5.25)

Integrals to compute element matrices may be carried out using results in Appendix E.
In the next chapter we shall generalize the above element forms to permit a system-

atic development with polynomials of any degree, as well as to permit curved edges.
The above forms, however, provide a basis from which we can consider solutions to
a number of different problem forms for the quasi-harmonic equation. We begin by
describing the element matrices for the simple triangular element.

Example 5.1. Element arrays for plane three-node triangular element

With shape functions written in the form

Na = aa + ba x + ca y

2�

in which� and aa, ba, ca are defined in Section 5.1.3, the computation of the “mass”
matrix, Ce, is given by

Ce
ab =

∫
�

NacNbhz dx dy

which for c constant over the element gives

Ce = chz�

12

⎡
⎣ 2 1 1

1 2 1
1 1 2

⎤
⎦

This result may be computed using the exact expression given in Appendix E.
The derivatives of the shape functions are expressed as

∂Na

∂x
= ba

2�
,

∂Na

∂ y
= ca

2�

giving the gradient matrix

ba = 1

2�

[
ba ca

]T
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Since the gradient matrix is constant the element “stiffness” matrix (ignoring the H
boundary term) is given by (noting kxy = kyx )

He =
⎧⎨
⎩kxx

4�

⎡
⎣ b1b1 b1b2 b1b3

b2b1 b2b2 b2b3
b3b1 b3b2 b3b3

⎤
⎦ + kyy

4�

⎡
⎣ c1c1 c1c2 c1c3

c2c1 c2c2 c2c3
c3c1 c3c2 c3c3

⎤
⎦

+ kxy

4�

⎡
⎣ (b1c1 + c1b1) (b1c2 + c1b2) (b1c3 + c1b3)

(b2c1 + c2b1) (b2c2 + c2b2) (b2c3 + c2b3)

(b3c1 + c3b1) (b3c2 + c3b2) (b3c3 + c3b3)

⎤
⎦

⎫⎬
⎭ hz

The load matrices follow a similar simple pattern and thus, for instance, due to constant
Q we have

se
a =

∫
�

Na Qhz dx dy = 1

3
Qhz�

This is a very simple (almost “obvious”) result.

Example 5.2. “Stiffness” matrix for axisymmetric three-node triangular element

The computation of the arrays for an axisymmetric problem involves an integral
of the radius over the area of the triangle. This is given by [viz. Appendix E]∫

�

r dr dz = r̄�

where r̄ = (r1 + r2 + r3)/3. This then gives the results

He =
⎧⎨
⎩ krr

4�

⎡
⎣ b1b1 b1b2 b1b3

b2b1 b2b2 b2b3
b3b1 b3b2 b3b3

⎤
⎦ + kzz

4�

⎡
⎣ c1c1 c1c2 c1c3

c2c1 c2c2 c2c3
c3c1 c3c2 c3c3

⎤
⎦

+ krz

4�

⎡
⎣ (b1c1 + c1b1) (b1c2 + c1b2) (b1c3 + c1b3)

(b2c1 + c2b1) (b2c2 + c2b2) (b2c3 + c2b3)

(b3c1 + c3b1) (b3c2 + c3b2) (b3c3 + c3b3)

⎤
⎦

⎫⎬
⎭ 2π r̄

Example 5.3. Load matrix for axisymmetric three-node triangular element

The nodal forces from a constant source term Q are computed from

se
a =

∫
�

Na Q2πrb Nb dr dz

and thus now has quadratic terms in the coordinates. If we substitute

r = r̄ + x

and use the results from Appendix E we obtain for node 1

se
1 = 1

6
(2r1 + r2 + r3)πQ�

with results for se
2 and se

3 obtained by cyclic permutation.
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5.2 Partial discretization: Transient problems
The transient problem may be solved in a number of ways. In Chapter 3 we considered
a simple discrete time method for the one-dimensional problem in terms of the rate. We
again consider the procedure described in Section 3.9.3 in which the time dependence
is given by (3.96). However, here we will formulate our solution in terms of the discrete
values of φ itself. If we let

φ̂n+1 = φ̃n + (1 − θ)�t ˙̃
φn

denote all the terms from the solution at time tn , from (3.96) the approximation to the
rate at tn+1 is given by

˙̃
φn+1 = 1

θ �t

(
φ̃n+1 − φ̂n+1

)
where �t = tn − tn−1 and θ > 0. An approximate solution to the semi-discrete
equations at each time tn+1 is obtained by solving the set of equations[

1

θ �t
C + H

]
φ̃n+1 = sn+1 + 1

θ �t
Cφ̂n+1 (5.26)

If the initial condition is approximated as

φ(x, 0) ≈ N(x)φ̃(0) with φ̃(0) = φ̃0

a solution for φ̃1 is immediately available from (5.26) by solving a set of algebraic
equations. For each subsequent time step the solution process is identical to the time-
independent problem except for the modified force vector and a need to use a coeffi-
cient matrix which has a term inversely proportional to the size of the time increment.

5.3 Numerical examples: An assessment of accuracy
Assembling explicitly worked out “stiffnesses” of triangular elements for the “regular”
mesh pattern shown in Fig. 5.5a the discretized equations are identical with those that
are derived by well-known finite difference methods [49]. The same result holds for
the mesh pattern shown in Fig. 5.5b [10]. For cases where all boundary conditions
are given as prescribed values

φ = φ̄ on �φ

the solutions obtained by the two methods obviously will be identical, and so also
will be the orders of approximation.

However, if the mesh shown in Fig. 5.5c, which is also based on a square arrange-
ment of nodes but with an “irregular” element pattern, is used a difference between
the two approaches for the “load” vector se will be evident. The assembled equations
will have the same “stiffness” matrix as in Fig. 5.5a but will show “loads” which
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(a) (b)

(c)

FIGURE 5.5
“Regular” and “irregular” subdivision patterns.

differ by small amounts from node to node, the sum of the loads is still the same as
that due to the finite difference expressions. The solutions therefore differ only locally
and will represent the same averages.

Further advantages of the finite element process are:

1. It can deal simply with nonhomogeneous and anisotropic situations (particularly
when the direction of anisotropy is variable).

2. The elements can be graded in shape and size to follow arbitrary boundaries and
to allow for regions of rapid variation of the function sought, thus controlling the
errors in a most efficient way (viz. Chapters 15 and 16).

3. Specified gradient or “radiation” boundary conditions are introduced naturally
and with a better accuracy than in standard finite difference procedures.

4. Higher order elements presented in the next chapter can be readily used to improve
accuracy without complicating boundary conditions—a difficulty always arising
with finite difference approximations of a higher order.

5. Finally, but of considerable importance in the computer age, standard programs
may be used for assembly and solution.
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FIGURE 5.6
Torsion of rectangular prismatic bar.

5.3.1 Torsion of prismatic bars
The torsion of prismatic elastic bars may be solved using a quasi-harmonic equation
formulation. Here either a warping function or a stress function approach may be used.
In Fig. 5.6a we show a rectangular bar loaded by an end torque Mt . The analysis is
performed on the cross-section as shown in Fig. 5.6b.

The use of a warping function is governed by the formulation in which displace-
ments are given as

u = −yzθ, v = xzθ, and w = ψ(x, y)θ

where x, y are coordinates in the cross-section, z is a coordinate of the bar axis, θ
is the rate of twist, and ψ is the warping function. The nonzero strain components
resulting from these displacements are given by

γxz = θ

(
∂ψ

∂x
− y

)
and γyz = θ

(
∂ψ

∂ y
+ x

)
(5.27)

giving, for an isotropic elastic material, the nonzero stresses

τxz = Gγxz and τyz = Gγyz (5.28)

Inserting the expression for stresses into the equilibrium equation (2.18) with zero
body and inertia forces gives the governing differential equation

θ

[
∂

∂x

(
G
∂ψ

∂x

)
+ ∂

∂ y

(
G
∂ψ

∂ y

)]
= 0 (5.29)
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and for stress-free boundary conditions

τnz = nxτxz + nyτyz = 0 (5.30)

in which nx and ny are the direction cosines for the outward normal to the boundary
of the rectangular section. Thus, for θG = kxx = kyy, kxy = 0 we have the standard
quasi-harmonic equation. Introducing appropriate changes in parameter definitions
into (5.7), the problem is solved from the weak form expressed as

G(δψ,ψ) = θ

∫
�

[
∂δψ

∂x
G

(
∂ψ

∂x
− y

)
+ ∂δψ

∂ y
G

(
∂ψ

∂ y
+ x

)]
d� = 0

At least one value of the warping function must be specified to have a unique solution.
In addition a unit value of θ may be used in G during computation of ψ . In this case
the element sa is given by

sa =
∫
�

(
∂Na

∂x
y − ∂Na

∂ y
x

)
d�

The total torque acting on a cross-section is given by

Mt =
∫

A

[−τxz y + τyz x
]

dA

=
∫

A
G

[
x2 + y2 − y

∂ψ

∂x
+ x

∂ψ

∂ y

]
dA θ = G Jψθ

where G Jψ is the effective torsional stiffness.
As an alternative a stress function formulation is deduced using the representation

for stresses

τxz = −∂φ
∂ y

and τyz = ∂φ

∂x
(5.31)

Combining (5.27) and (5.28) with (5.31) and eliminating the warping function ψ
gives the differential equation

∂

∂x

(
1

G

∂φ

∂x

)
+ ∂

∂ y

(
1

G

∂φ

∂ y

)
= 2θ

with
φ(s) = Constant on �q

representing a stress-free boundary condition.
The total torque acting on a cross-shaded section is now given by

Mt =
∫

A

[
x
∂φ

∂x
+ y

∂φ

∂ y

]
dA = G Jφθ

where G Jφ is the effective torsional stiffness.
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FIGURE 5.7
Torsion of a rectangular shaft. The numbers in parentheses show a more accurate solution
due to Southwell using a 12 × 16 mesh (values of φ/GθL2).

The two solutions provide a bound on the torsional stiffness with the warping func-
tion solution giving an upper bound, G Jψ , and the stress function a lower bound, G Jφ .

5.3.1.1 Torsion of rectangular shaft
In Fig. 5.7 a test comparing the results obtained on an “irregular” mesh of three-node
triangular elements with a relaxation solution of the lowest order finite difference
approximation is shown. Both give results of similar accuracy, as indeed would be
anticipated. In general superior accuracy is available with the finite element discretiza-
tion. Furthermore, it is possible to get bounds on the torsional stiffness, as indicated
above. To illustrate this latter aspect we consider a square bar which is solved using
four-node rectangular elements and a range of n ×n meshes in which n is the number
of spaces between nodes on each side. The results for the computed torsional stiffness
values are plotted in Fig. 5.8.

5.3.1.2 Torsion of hollow bimetallic shaft
The pure torsion of a nonhomogeneous rectangular shaft with a circular hole is illus-
trated in Fig. 5.9. In the finite element solution presented, the hollow section is repre-
sented by a material for which G has a value of the order of 10−3 compared with the
other materials.1 The results compare well with the contours derived from an accurate
finite difference solution [11].

1This was done to avoid difficulties due to the “multiple connection” of the region and to permit the
use of a standard program.
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FIGURE 5.9

Torsion of a hollow bimetallic shaft. φ/GθL2 × 104.

5.3.2 Transient heat conduction
5.3.2.1 Transient heat conduction of a rectangular bar
Consider a long bar with a square cross-section of size L × L in which the transient
heat conduction equation (2.84) applies and assume that the rate of heat generation



132 CHAPTER 5 Field Problems: A Multidimensional Finite Element Method

varies with time as
Q = Q0 e−αt (5.32)

(this might approximate a problem of heat development due to hydration of concrete).
We assume that at t = 0, φ = 0 throughout. Further, we shall take φ = 0 on all
boundaries for all times.

A Fourier series approximation for the solution is given by

φ =
M∑

m=1

N∑
n=1

Nmn(x, y)φ̃mn(t)

Nmn = cos
mπx

L
cos

nπ y

L
, m, n = 1, 3, 5, . . .

(5.33)

with x and y measured from the center (Fig. 5.10). The even components of the Fourier
series are omitted due to the required symmetry of solution. When substituted into
the weak form only diagonal terms exist in H and C, and we have

Hmn =
∫ L/2

−L/2

∫ L/2

−L/2

[
k

(
∂Nmn

∂x

)2

+ k

(
∂Nmn

∂ y

)2]
dx dy = π2k

4
(m2 + n2)

Cmn =
∫ L/2

−L/2

∫ L/2

−L/2
cN 2

mn dx dy = L2c

4

smn =
∫ L/2

−L/2

∫ L/2

−L/2
Nmn Q0 e−αt dx dy

= 4Q0 L2

mnπ2 (−1)(m+3)/2(−1)(n+3)/2 e−αt (5.34)
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FIGURE 5.10
Two-dimensional transient heat development in a square prism—plot of temperature at
center: (a) boundary condition and (b) solution at center.
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This leads to an ordinary differential equation with parameters φ̃mn :

Hmnφ̃mn + Cmn
dφ̃mn

dt
+ smn = 0 (5.35)

with initial condition φ̃mn = 0 when t = 0. The exact solution of this is easy to
obtain, as is shown in Fig. 5.10 for the parameters

L = c = Q0 = α = 1 and k = 0.75

π2

and choices for M and N .
The above solution also may be used to assess the accuracy of a finite element

result. For the finite element solution we use four-node square elements. The transient
solution is performed using the procedure given in Section 5.2. Using symmetry
conditions, a mesh of 20×20 four-node elements is used to approximate one quadrant
of the domain. A constant increment in time, �t = 0.01, is used to perform the
solution. Results for the temperature at the center of the prism are given in Fig. 5.11
and compared to the series solutions.
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FIGURE 5.11
Transient heat development in a square prism—plot of temperature at center.
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FIGURE 5.12
Flow under a dam through a highly nonhomogeneous and contorted foundation.

5.3.3 Anisotropic seepage
The next problem is concerned with the flow through highly nonhomogeneous,
anisotropic, and contorted strata. The basic governing equation is

∂

∂x ′

(
kx ′x ′

∂H

∂x ′

)
+ ∂

∂ y′

(
ky′ y′

∂H

∂ y′

)
= 0 (5.36)

in which H is the hydraulic head and kx ′x ′ and ky′ y′ represent the permeability coeffi-
cients in the direction of the (inclined) principal axes. However, a special feature has
to be incorporated to allow for changes of x ′ and y′ principal directions from element
to element.

No difficulties are encountered in computation, and the problem together with its
solution is given in Fig. 5.12 [3].

5.3.4 Electrostatic and magnetostatic problems
In this area of activity frequent need arises to determine appropriate field strengths and
the governing equations are commonly of the standard quasi-harmonic type discussed
here. Thus the formulations are directly transferable. One of the first applications made
as early as 1967 [4] was to fully three-dimensional electrostatic field distributions
governed by simple Laplace equations (Fig. 5.13).
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FIGURE 5.13
A three-dimensional distribution of electrostatic potential around a porcelain insulator in
an earthed trough.

In Fig. 5.14 a similar use of triangular elements was made in the context of
magnetic two-dimensional fields by Winslow [6]. These early works stimulated con-
siderable activity in this area and much additional work has been published [12–15].

5.3.5 Lubrication problems
Once again a standard Poisson type of equation is encountered in the two-dimensional
domain of a bearing pad. In the simplest case of constant lubricant density and vis-
cosity the equation to be solved is the Reynolds equation

∂

∂x

(
h3 ∂ p

∂x

)
+ ∂

∂ y

(
h3 ∂ p

∂ y

)
= 6μV

∂h

∂x
(5.37)
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FIGURE 5.14
Field near a magnet.

where h is the film thickness, p is the pressure developed, μ is the viscosity, and V
is the velocity of the pad in the x-direction.

Figure 5.15 shows the pressure distribution in a typical finite width stepped pad
[16]. The boundary condition is simply that of zero pressure and it is of interest to
note that the step causes an equivalent of a “line load” on integration by parts of the
right-hand side of Eq. (5.37).

More general cases of lubrication problems, including vertical pad movements
(squeeze films) and compressibility, can obviously be dealt with, and much work has
been done here [17–25].

5.3.6 Irrotational and free surface flows
The basic Laplace equation which governs the flow of viscous fluid in seepage prob-
lems is also applicable in the problem of irrotational fluid flow outside the boundary
layer created by viscous effects. The seepage example given above is adequate to
illustrate the general applicability in this context. Further examples for this class of
problems are cited by Martin [26] and others [25,27–32].
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FIGURE 5.15
Pressure distribution for a stepped pad bearing.

If no viscous effects exist, then it can be shown that for a fluid starting at rest the
motion must be irrotational, i.e.,

ωz ≡ ∂u

∂ y
− ∂v

∂x
= 0 (5.38)

where u and v are appropriate velocity components.
This implies the existence of a velocity potential, giving

u = −∂φ
∂x
, v = −∂φ

∂ y
(5.39a)

or
u = −∇φ (5.39b)

If, further, the flow is incompressible, the continuity equation [which is similar to
Eq. (2.80)] has to be satisfied, i.e.,

∇Tu = 0 (5.40)

and therefore
∇T(∇φ) = ∇2φ = 0 (5.41)

Alternatively, for two-dimensional flow a stream function may be introduced defin-
ing the velocities as

u = −∂ψ
∂ y
, v = ∂ψ

∂x
(5.42)
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and this identically satisfies the continuity equation. The irrotational condition must
now ensure that

∇T(∇ψ) = ∇2ψ = 0 (5.43)

and thus problems of ideal fluid flow can be posed in either form. As the standard
formulation is again applicable, there is little more that needs to be added, and for
examples the reader can consult the literature cited. We also discuss this problem in
more detail in Ref. [33].

The similarity with problems of seepage flow, which has already been discussed,
is obvious [34,35].

A particular class of fluid flow deserves mention. This is the case when a free
surface limits the extent of the flow and this surface is not known a priori.

The class of problem is typified by two examples—that of a freely overflowing
jet (Fig. 5.16a) and that of flow through an earth dam (Fig. 5.16b). In both, the free
surface represents a streamline and in both the position of the free surface is unknown
a priori but has to be determined so that an additional condition on this surface is
satisfied. For instance, in the second problem, if formulated in terms of the potential
for the hydraulic head H , Eq. (5.36) governs the problem.

The free surface, being a streamline, imposes the condition that

∂H

∂n
= 0 (5.44)

be satisfied there. In addition, however, the pressure must be zero on the surface as
this is exposed to atmosphere. As

H = p

γ
+ y (5.45)

p = 0

p = 0

p = 0

x

y

(b)

(a)

FIGURE 5.16
Typical free surface problems with a streamline also satisfying an additional condition of
pressure = 0: (a) jet overflow and (b) seepage through an earth dam.
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where γ is the fluid specific weight, p is the fluid pressure, and y is the elevation
above some (horizontal) datum, we must have on the surface

H = y (5.46)

The solution may be approached iteratively. Starting with a prescribed free surface
streamline the standard problem is solved. A check is carried out to see if Eq. (5.46) is
satisfied and, if not, an adjustment of the surface is carried out to make the new y equal
to the H just found. A few iterations of this kind show that convergence is reasonably
rapid. Taylor and Brown [36] show such a process. Alternative methods including
special variational principles for dealing with this problem have been devised over
the years and interested readers can consult Refs. [37–45].

5.4 Problems
5.1 The anisotropic properties for k are kx ′ = 0.4, ky′ = 2.1, and kz′ = 1.0. The

axes are oriented as shown in Fig. 5.17. For θ = 30◦ compute the terms in the
matrix k (e.g., kxx , kxy , etc.) with respect to the axes x, y, z.

5.2 A two-dimensional heat equation is located in the x-y plane. The problem is
allowed to convect heat to the surrounding region according to

Q(x, y) = −β[φ(x, y)− φ0]
where β is a convection parameter and φ0 the temperature of the surrounding
medium.
Construct a weak form for the problem.
For a finite element approximation to φ and δφ deduce the form of the new
matrices which result from the modified weak form.

5.3 For the quasi-harmonic equation consider a square four-node element with unit
side lengths in the x- and y-directions. Using FEAPpv (or any other available

x

y

x ′

y ′

z = z′

θ

FIGURE 5.17
Orientation of axes for Problem 5.1.
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program) determine the rank of the element matrix H for the case where k = I
(i.e., isotropic with k = 1) and H = 0 using 1×1 Gaussian quadrature. Repeat
the calculation using 2 × 2 and 3 × 3 quadrature where each direction uses the
values given in Table 3.3:

(a) What is the lowest order quadrature that gives a matrix H with full rank?
(b) What is the lowest order quadrature that evaluates the matrix H exactly?

Hint: The rank of H may be determined from the eigenproblem given by

Hvi = λi vi with vT
i v j = δi j

where δi j is the Kronecker delta. The rank of H is the number of nonzero
eigenvalues λi (a zero is any value below the round-off limit).

5.4 Solve Problem 5.3 for a three-node triangular element mesh.
Using the eigenvector for the zero eigenvalue of the fully integrated element
array H determine and sketch the shape of eigenvectors for the nonzero eigen-
values. (Note: The element has one zero eigenvalue, v0.)

5.5 Consider the torsion of a rectangular bar by the warping function formulation
discussed in Section 5.3.1. Let a and b be the side lengths in the x- and y-
directions, respectively. For a homogeneous section with shear modulus G
the warping function has the behavior shown in Fig. 5.18 for a/b ratios of 1,
1.25, and 2. Note that the behavior transitions from eight to four regions of ±
variation. Estimate the a/b ratio where this transition just occurs.
To make your estimate use FEAPpv (or any other available program) with a
fine mesh of four-node rectangular elements. Set the boundary conditions to
make the warping function zero along the x and y axes. The transition will occur
at the smallest a/b for which all the values on the perimeter of one quadrant of
the cross-section have the same sign or are “numerically” zero.

5.6 A cross-section of a long prismatic section is shown in Fig. 5.19 and subjected
to a constant uniform temperatures 370 ◦C on the left boundary and 66 ◦C on
the right boundary. The top and bottom edges are assumed to be insulated so
that qn = 0.
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FIGURE 5.18
Warping function for torsion of rectangular bar for Problem 5.5: (a) a/b = 1; (b) a/b =
1.25; (c) a/b = 2.
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FIGURE 5.19
Thermal analysis of composite section for Problem 5.6.

The cross-section is a composite of fir (A), concrete (B), glass wool (C), and yel-
low pine (D). The thermal conductivity for each of the parts is kA = 0.11, kB =
0.78, kC = 0.04, and kD = 0.147 in consistent units for the geometry of the
section shown:

(a) Estimate the heat flow through the cross-section assuming qy = 0 and qx is
constant in each part. Let the temperatures at each junction be T (0) = 370,
T (0.025) = T1, T (0.10) = T2, and T (0.15) = 66.
Hint: Assume T is a function of x only.

(b) Use FEAPpv (or any other available program) to compute a finite element
solution using four-node rectangular elements. First perform a solution on
a coarse mesh and use this to design a mesh using a finer discretization.

Plot a distribution of heat flow qn across each of the internal boundaries.
5.7 Company X&Y plans to produce a rectangular block which needs to be pro-

cessed by a thermal quench in a medium which is 100 ◦C above room temper-
ature. The block shown in Fig. 5.20a has a = 10 and b = 20 (i.e., the block is
10 × 10 × 20). It has been determined that the thermal properties of the block
may be specified by an isotropic Fourier model in which k = 1 and c = 1. The
surface convection constant H is 0.05.
The quench must be maintained until the minimum temperature in the block
reaches 99 ◦C above room temperature. Use FEAPpv (or any other available
program) to perform a transient analysis to estimate the required quench time:

(a) First perform a 2-D plane analysis on a 10 × 10 cross-section using a uni-
form mesh of four-node quadrilateral elements. Use symmetry to reduce
the size of the domain analyzed. The surface convection will be modeled
by two-node line elements along the outer perimeter. The analysis region
is shown in Fig. 5.20b with the boundary conditions to be imposed. Locate
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FIGURE 5.20
Thermal quench in two and three dimensions for Problem 5.7.

the node where the minimum temperature occurs and plot the behavior vs.
time (a good option is to use MATLAB or GNU Octave to perform plots).
Estimate the duration of time needed for the minimum temperature to reach
the desired value. (Hint: One approach to selecting time increments is to
select a very small value, e.g.,�t = 10−8 and perform 10 steps of the solu-
tion. Multiply the time increment by 10 and perform 9 more steps. Repeat
the multiplication until the desired final time value is reached.)

(b) Using the time duration estimated in (a) perform a 3-D analysis using a
uniform mesh of eight-node hexahedral elements. Use symmetry to reduce
the size of the region analyzed. Note: The convection condition applies to
all outer surfaces.
Estimate the duration of quench time needed for the minimum temperature
to reach the desired value.

(c) What analyses would you perform if the block was 10 × 10 × 5?
(d) Comment on use of a 2-D analysis to estimate the required quench times

for other part shapes.

5.8 The distribution of shear stresses on the cross-section of a cantilever beam
shown in Fig. 5.21a may be determined by solving the quasi-harmonic equa-
tion [46]

∂2φ

∂x2 + ∂2φ

∂ y2 = 0

with boundary condition

φ = P

2I

[ ∫
y2dx − ν

3(1 + ν)
y3

]
where P is the end load, I is the moment of inertia of the cross-section, ν is
the Poisson ratio of an isotropic elastic material, and φ is a stress function. The
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FIGURE 5.21
End-loaded cantilever beam for Problem 5.8: (a) cantilever beam and (b) section A-A.

shear stresses are determined from

τxz = −∂φ
∂ y

and τyz = ∂φ

∂x
+ P

2I

[
ν

1 + ν
x2 − y2

]

See Ref. [46] for details on the formulation.

(a) Show that the stress function satisfies the equilibrium equation when the
bending stress is computed from

σz = − P(L − z)y

I

and σx = σy = τxy = 0. L is the length of the beam.
(b) Develop a weak form for the problem in terms of the stress function φ.
(c) For a finite element formulation develop the relation to compute the bound-

ary condition for the case when either three-node triangular or four-node
rectangular elements are used.

(d) Write a program to determine the boundary values for the cross-section
shown in Fig. 5.21b. Let w = 2 and h = 3. Use the quasi-harmonic ther-
mal element in FEAPpv (or any other available program) to solve for the
stress function φ. Plot the distribution for φ on the cross-section.

(e) Modify the expressions in FEAPpv (or any other program for which source
code is available) to compute the stress distribution on the cross-section.
Solve and plot their distribution. Compare your results to those computed
from the classical strength of materials approach.

Hint: Normalize your solution by the factor P/2I to simplify expressions.
5.9 A long sheet pile is placed in soil as shown in Fig. 5.22. The anisotropic proper-

ties of the soil are oriented so that x = x ′ and y = y′. The governing differential
equation is given in Section 5.3.3. The soil has the properties kx = 2 and ky = 3.
Use FEAPpv (or any other available program) to determine the distribution of
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FIGURE 5.22
Seepage under a sheet pile for Problem 5.9.

head and the flow in the region shown. Solve the problem using a mesh of four-
node, eight-node, and nine-node quadrilateral elements. Model the problem so
that there are about four times as many four-node elements as used for the eight-
and nine-node models (and thus approximately an equal number of nodes for
each model). Compare total flow obtained from each analysis.

5.10 An axisymmetric sheet pile is placed in soil as shown in Fig. 5.23. The anisotro-
pic properties of the soil are oriented so that r = r ′ and z = z′. The governing
equation for plane flow is given in Section 5.3.3. Deduce the Euler differential
equation for the axisymmetric problem from the weak form and definitions
given in Section 5.1.2.1 suitably modified for the seepage problem.
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FIGURE 5.23
Seepage under an axisymmetric sheet pile for Problem 5.10.
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Assuming isotropic properties with k = 3, use FEAPpv (or any other avail-
able program) to determine the distribution of head and the flow in the region
shown. Solve the problem using a mesh of four-node, eight-node, and
nine-node quadrilateral elements. Model the problem so that there are about
four times as many four-node elements as used for the eight- and nine-node
models (and thus approximately an equal number of nodes for each model).
Compare total flow obtained from each analysis.

5.11 A membrane occupies a region in the x-y plane and is stretched by a uniform
tension T . When subjected to a transient load q(x, y, t) acting normal to the
surface the governing differential equation is given by

−T

[
∂2u

∂x2 + ∂2u

∂ y2

]
+ m

∂2u

∂t2 = q(x, y, t)

(a) Construct a weak form for the differential equation for the case when bound-
ary conditions are given by u(s, t) = 0 for s on �.

(b) Show that the solution by a finite element method may be constructed using
C0 functions.

(c) Approximate the u and δu by C0 shape functions Na(x, y) and determine
the semi-discrete form of the equations.

(d) For the case of steady harmonic motion, u may be replaced by

u(x, y, t) = w(x, y) exp iωt

where i = √−1 and ω is the frequency of excitation.
Using this approximation, deduce the governing equation for w. Construct
a weak form for this equation. Using C0 approximations for w determine
the form of the discretized problem.

5.12 Program development project:2 Write a MATLAB [47] or GNU Octave [48]
program3 to solve plane and axisymmetric quasi-harmonic problems.
Your program system should have the following features:

(a) Input module which describes:

(i) Nodal coordinate values, xa

(ii) Nodes connected to each element and material properties of the
element

(iii) Node and degree-of-freedom (dof) for each applied nodal flux force
(for problems in this chapter only one degree of freedom is used, how-
ever later we will use more)

2If programming is included as a part of your study, it is recommended that this problem be solved.
Several extensions will be suggested later to create a solution system capable of performing additional
steps of finite element analysis.
3Another programming language may be used, however, MATLAB and GNU Octave offer many advan-
tages to write simple programs and are also useful to easily complete later exercises.
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FIGURE 5.24
Patch test for triangles for Problem 5.12.

(iv) Node and dof for fixed (essential) boundary condition—also value if
nonzero.

(b) Module to compute the H matrix for a three-node triangular element
(c) Module to assemble element arrays into global arrays and specified nodal

forces and displacements
(d) Module to solve Hφ̃ = s
(e) Module to output nodal and element values.

Use your program to solve the patch test problem shown in Fig. 5.24. Use the
properties k = 200 and qn = 1. You can verify the correctness of your answer
by computing an exact solution to the problem. The correctness of computed
arrays may be obtained using results from FEAPpv (or any available quasi-
harmonic program).

5.13 Program development project: Add a graphics capability to the program devel-
oped in Problem 5.12 to plot contours of the computed finite element φ. (Hint:
MATLAB has contour and surf options to easily perform this operation.)
Solve a two-dimensional plane problem of your choice and plot contours for φ.

5.14 Program development project: Extend the program developed in Problem 5.12
to solve transient problems.
Include an input module to specify the initial temperatures.
Also add a capability to consider time-dependent source terms for Q.
Test your program by solving the square cross-section problem described in
Section 5.3.2.



References 147

References
[1] O.C. Zienkiewicz, Y.K. Cheung, Finite elements in the solution of field problems,

The Engineer, September 1965, pp. 507–510.
[2] W. Visser, A finite element method for the determination of non-stationary

temperature distribution and thermal deformation, in: Proceedings of the First
Conference on Matrix Methods in Structural Mechanics, vol. AFFDL-TR-66-80,
Wright Patterson Air Force Base, Ohio, October 1966.

[3] O.C. Zienkiewicz, P. Mayer, Y.K. Cheung, Solution of anisotropic seep-
age problems by finite elements, J. Eng. Mech., ASCE 92 (1) (1966)
111–120.

[4] O.C. Zienkiewicz, P.L. Arlett, A.K. Bahrani, Solution of three-dimensional field
problems by the finite element method, The Engineer, October 1967.

[5] L.R. Herrmann, Elastic torsion analysis of irregular shapes, J. Eng. Mech., ASCE
91 (6) (1965) 11–19.

[6] A.M. Winslow, Numerical solution of the quasi-linear Poisson equation in a
non-uniform triangle ‘mesh’, J. Comput. Phys. 1 (1966) 149–172.

[7] S. Govindjee, J. Strain, T.J. Mitchell, R.L. Taylor, Convergence of an efficient
local least-squares fitting method for bases with compact support, Comput.
Methods Appl. Mech. Eng. 213–216 (2012) 84–92, doi: http://dx.doi.org/
10.1016/j.cma.2011.11.017.

[8] R. Courant, Variational methods for the solution of problems of equilibrium and
vibration, Bull. Am. Math. Soc. 49 (1943) 1–61.

[9] M.J. Turner, R.W. Clough, H.C. Martin, L.J. Topp, Stiffness and deflection anal-
ysis of complex structures, J. Aeronaut. Sci. 23 (1956) 805–823.

[10] D.N. de G. Allen, Relaxation Methods, McGraw-Hill, London, 1955.
[11] J.F. Ely, O.C. Zienkiewicz, Torsion of compound bars—a relaxation solution,

Int. J. Mech. Sci. 1 (1960) 356–365.
[12] P. Silvester, M.V.K. Chari, Non-linear magnetic field analysis of DC machines,

Trans. IEEE (7) (1970) 5–89.
[13] P. Silvester, M.S. Hsieh, Finite element solution of two dimensional exterior

field problems, Proc. IEEE 118 (1971).
[14] B.H. McDonald, A. Wexler, Finite element solution of unbounded field prob-

lems, Proc. IEEE MTT-20 (12) (1972).
[15] E. Munro, Computer design of electron lenses by the finite element method, in:

Image Processing and Computer Aided Design in Electron Optics, Academic
Press, New York, 1973, p. 284.

[16] D.V. Tanesa, I.C. Rao, Student Project Report on Lubrication, Royal Naval
College, 1966.

[17] M.M. Reddi, Finite element solution of the incompressible lubrication problem,
Trans. Am. Soc. Mech. Eng. 91 (Ser. F) (1969) 524.

[18] M.M. Reddi, T.Y. Chu, Finite element solution of the steady state compressible
lubrication problem, Trans. Am. Soc. Mech. Eng. 92 (Ser. F) (1970).

http://dx.doi.org/10.1016/j.cma.2011.11.017
http://dx.doi.org/10.1016/j.cma.2011.11.017


148 CHAPTER 5 Field Problems: A Multidimensional Finite Element Method

[19] J.H. Argyris, D.W. Scharpf, The incompressible lubrication problem, J. Roy.
Aeronaut. Soc. 73 (1969) 1044–1046.

[20] J.F. Booker, K.H. Huebner, Application of finite element methods to lubrica-
tion: an engineering approach, J. Lubr. Technol., Trans. ASME 14 (Ser. F)
(1972) 313.

[21] K.H. Huebner, Application of finite element methods to thermohydrodynamic
lubrication, Int. J. Numer. Methods Eng. 8 (1974) 139–168.

[22] S.M. Rohde, K.P. Oh, Higher order finite element methods for the solution of
compressible porous bearing problems, Int. J. Numer. Methods Eng. 9 (1975)
903–912.

[23] A.K. Tieu, Oil film temperature distributions in an infinitely wide glider bearing:
an application of the finite element method, J. Mech. Eng. Sci. 15 (1973) 311.

[24] K.H. Huebner, Finite element analysis of fluid film lubrication—a survey, in:
R.H. Gallagher, J.T. Oden, C. Taylor, O.C. Zienkiewicz (Eds.), Finite Elements
in Fluids, vol. II, John Wiley & Sons, New York, 1975, pp. 225–254.

[25] A. Curnier, R.L. Taylor, A thermomechanical formulation and solution of
lubricated contacts between deformable solids, J. Lubr. Technol., ASME 104
(1982) 109–117.

[26] H.C. Martin, Finite element analysis of fluid flows, in: Proceedings of the
Second Conference on Matrix Methods in Structural Mechanics, vol. AFFDL-
TR-68-150, Wright Patterson Air force Base, Ohio, October 1968.

[27] G. de Vries, D.H. Norrie, Application of the finite element technique to potential
flow problems, Technical Report, Reports 7 and 8, Dept. Mech. Eng., University
of Calgary, Alberta, Canada, 1969.

[28] J.H. Argyris, G. Mareczek, D.W. Scharpf, Two and three dimensional flow
using finite elements, J. Roy. Aeronaut. Soc. 73 (1969) 961–964.

[29] L.J. Doctors, An application of finite element technique to boundary value
problems of potential flow, Int. J. Numer. Methods Eng. 2 (1970) 243–252.

[30] G. de Vries, D.H. Norrie, The application of the finite element technique to
potential flow problems, J. Appl. Mech., ASME 38 (1971) 798–802.

[31] S.T.K. Chan, B.E. Larock, L.R. Herrmann, Free surface ideal fluid flows by
finite elements, J. Hydraul. Div., ASCE 99 (6) (1973).

[32] B.E. Larock, Jets from two dimensional symmetric nozzles of arbitrary shape,
J. Fluid Mech. 37 (1969) 479–483.

[33] O.C. Zienkiewicz, R.L. Taylor, P. Nithiarasu, The Finite Element Method for
Fluid Dynamics, Elsevier, Oxford, seventh ed., 2013.

[34] C.S. Desai, Finite element methods for flow in porous media, in: J.T. Oden,
O.C. Zienkiewicz, R.H. Gallagher, C. Taylor (Eds.), Finite Elements in Fluids,
vol. 1, John Wiley & Sons, New York, 1976, pp. 157–182.

[35] I. Javandel, P.A. Witherspoon, Applications of the finite element method to
transient flow in porous media, Trans. Soc. Petrol. Eng. 243 (1968) 241–251.

[36] R.L. Taylor, C.B. Brown, Darcy flow solutions with a free surface, J. Hydraul.
Div., ASCE 93 (2) (1967) 25–33.



References 149

[37] J.C. Luke, A variational principle for a fluid with a free surface, J. Fluid Mech.
27 (1957) 395–397.

[38] K. Washizu, Variational Methods in Elasticity and Plasticity, Pergamon Press,
New York, third ed., 1982.

[39] J.C. Bruch, A survey of free-boundary value problems in the theory of fluid
flow through porous media, Adv. Water Resour. 3 (1980) 65–80.

[40] C. Baiocchi, V. Comincioli, V. Maione, Unconfined flow through porous media,
Meccanice, Ital. Ass. Theor. Appl. Mech. 10 (1975) 51–60.

[41] J.M. Sloss, J.C. Bruch, Free surface seepage problem, J. Eng. Mech., ASCE
108 (5) (1978) 1099–1111.

[42] N. Kikuchi, Seepage flow problems by variational inequalities, Int. J. Numer.
Anal. Methods Geomech. 1 (1977) 283–290.

[43] C.S. Desai, Finite element residual schemes for unconfined flow, Int. J. Numer.
Methods Eng. 10 (1976) 1415–1418.

[44] C.S. Desai, G.C. Li, A residual flow procedure and application for free surface,
and porous media, Adv. Water Resour. 6 (1983) 27–40.

[45] K.J. Bathe, M. Koshgoftar, Finite elements from surface seepage analysis with-
out mesh iteration, Int. J. Numer. Anal. Methods Geomech. 3 (1979) 13–22.

[46] S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, McGraw-Hill, New York,
second ed., 1951.

[47] MATLAB, 2012. <www.mathworks.com>.
[48] GNU Octave, 2012. <www.gnu.org/software/octave>.
[49] O.C. Zienkiewicz, R.L Taylor, J.Z. Zhu, The Finite Element Method: Its Basis

& Fundamentals, Elsevier, Oxford, sixth ed., 2005.

http://www.mathworks.com
http://www.gnu.org/software/octave

	5 Field Problems:  A Multidimensional Finite Element Method
	5.1 Field problems: Quasi-harmonic equation
	5.1.1 Irreducible form
	5.1.2 Finite element discretization
	5.1.2.1 Two-dimensional plane and axisymmetric problem
	5.1.2.2 Element matrices

	5.1.3 Shape functions for triangle, rectangle, and tetrahedron
	5.1.3.1 Triangle with three nodes
	5.1.3.2 Rectangle with four nodes
	5.1.3.3 Tetrahedron with four nodes


	5.2 Partial Discretization: Transient Problems
	5.3 Numerical examples: An assessment of accuracy
	5.3.1 Torsion of prismatic bars
	5.3.1.1 Torsion of rectangular shaft
	5.3.1.2 Torsion of hollow bimetallic shaft

	5.3.2 Transient heat conduction
	5.3.2.1 Transient heat conduction of a rectangular bar

	5.3.3 Anisotropic seepage
	5.3.4 Electrostatic and magnetostatic problems
	5.3.5 Lubrication problems
	5.3.6 Irrotational and free surface flows

	5.4 Problems
	References


