
Numerical Simulation and Scientific Computing II – Fluid Mechanics

Numerical simulation and Scientific Computing II – Fluid
mechanics. General informations:

• Submission is due on Wednesday, May 19th 2022 10 am. Please submit
the material to francesco.zonta@tuwien.ac.at. Use Dropbox, Wetransfer or own-
cloud in case you are willing to submit files of large size. Alternatively, you can
upload it in TUWEL.

• Include the name of all group members (max. 3) in your submission

• Submit everything (source files, results, animations – if any – and final reports)
as one zip-file per exercise. Include a README file to explain the content and
the usage of the different files in the archives.

• The number of points corresponding to each task of the exercises is indicated
within square brackets, e.g. [2 POINTS]

• You can write your codes in Fortran, Matlab, Python, C/C++. Note: assistance
can be given in case you use Fortran or Matlab.

• In case you are willing to use Matlab to solve the exercises, but you do not have
it already installed in your computer, then you can download and install it via
the following link: http://www.sss.tuwien.ac.at/sss/mla/. There is a free Matlab
version for TU students.
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Numerical Simulation and Scientific Computing II – Fluid Mechanics

Exercise 1: Numerical solution of the diffusion equation in a
finite domain

Consider the 1D unsteady diffusion equation in cartesian coordinates:

∂C

∂t
= D

∂2Ci

∂x2 , (1)

with D = 10−6 the binary diffusion coefficient. The size of the domain along x is h
(i.e. the domain is characterized by a finite length). The grid spacing is ∆x (obtained
discretizing the domain length h using Nx points), and the time step is ∆t. Initial
condition is C = 0 everywhere inside the domain.

Questions

1. Assume Dirichlet/Neumann boundary conditions: C = 1 at x = 0 and ∂C/∂x =
0 at x = h. Solve Eq. 1 by an explicit finite difference approach that is 2nd or-
der accurate in space and 1st order accurate in time. Compare the results with
the analytical solution (see Lecture for reference). Show that the numerical so-
lution is not unconditionally stable. In particular, show that it is unstable for
d = D∆t/∆x2 > 0.5. [2 POINTS]

2. Assume Dirichlet boundary conditions at both boundaries: C = 1 at x = 0 and
C = 0 at x = h. Solve Eq. 1 for the same cases and using the same discretization
strategy (i.e. explicit finite difference approach, 2nd order in space and 1st order
in time) analyzed at point 1. Compare the long term behavior, limt→∞C(x), of
the present case with that of the previous case, point 1. [2 POINTS]

3. Assume Dirichlet/Neumann boundary conditions: i.e. C = 1 at x = 0 and
∂C/∂x = 0 at x = h. Solve the equation using an implicit scheme (2nd order
in space and 1st order in time) and discuss the stability of the solution. Compare
the new results with those obtained at point 1. [2 POINTS]

4. Assume Dirichlet/Neumann boundary conditions: i.e. C = 1 at x = 0 and
∂C/∂x = 0 at x = h. Solve the equation using an implicit scheme that is 2nd

order in space and 2nd order in time. Discuss the accuracy of the solution in
comparison with that obtained at point 3. [2 POINTS]

Produce plots and movies to support your conclusions (for your convenience, you can
take plots and movies presented during the lecture as reference for the purpose).
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Exercise 2: Numerical solution of the linear advection equation
in a periodic domain

Consider the 1D linear advection equation in cartesian coordinates:

∂Ci

∂t
= U

∂Ci

∂x
, (2)

where U = 1 is a given convection velocity. Assume ∆x = 0.01.

Questions

1. Solve Eq. 2 with the upwind scheme (please refer to the lecture for details). As-
sume two different initial conditions: a square pulse (C = 1 for 0.1 < x < 0.3,
C = 0 elsewhere) and a Gauss signal (for example C = exp(−10(4x − 1)2)).
The shape of these initial conditions is given in Fig. 1. Discuss the stability and
accuracy of the solution for varying Courant number Co. In particular, what
happens for Co > 1? And for Co < 1? And for Co = 1? [2 POINTS]

Produce plots and movies to support your conclusions (for your convenience, you can
take plots and movies presented during the lecture as reference for the purpose).
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Analytical Solution

Figure 1: Initial condition for the linear advection equation: square pulse (left), Gauss
signal (right).
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Exercise 3: Numerical solution of the lid-driven cavity flow in a
2D cartesian domain

Consider the flow inside a rectangular domain (cartesian coordinates), as sketched in
Fig.2. The governing balance equations for the problem (continuity, Navier-Stokes and
scalar transport) are:

∂ui

∂xi
= 0 (3)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+ 1
Re

∂2ui

∂xj
2 (4)

∂C

∂t
+ uj

∂C

∂xj
= 1
RePr

∂2C

∂xj
2 (5)

where ui is the flow velocity, p is pressure, C is the scalar concentration while Re and
Pr are the Reynolds and Prandtl numbers, respectively (main flow parameters1). Bound-
ary conditions are given in Fig.2.

Figure 2: Sketch of the flow configuration with indication of the boundary conditions.

1 For scalar transport, the Schmidt number (Sc) is more commonly introduced instead of the Prandtl
number (P r, used only when the transported scalar is temperature transport). In the present con-
text, and to simplify notation, we assume Sc = P r.
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Questions

1. Rewrite the above system of equations, Eq. 3-5, using the ψ − ω formulation
(please refer to the lecture for details). Solve the obtained system of equations
by an explicit finite difference approach that is 2nd order accurate in space and
1st order accurate in time. To define appropriate boundary conditions for the
ψ−ω formulation, please refer to the lecture. Consider a constant velocity u(t) =
U = 1 at the upper boundary, and set C = Cw = 1 at the left boundary. Assume
H = L = 1, and discretize the domain using Nx = Ny = 100 grid points along
x and y. Use a time step ∆t = 10−3. Initial conditions are ψ = 0, ω = 0, C = 0
everywhere inside the domain. Run the simulation until a steady-state condition
is reached. This condition can be assessed by looking at the behavior of the vor-
ticity field ω. In particular, the flow can be considered steady when, in each grid
point, |ωn+1

i,j −ωn
i,j |< ε, with ε = 10−6 (which means that the value of the vorticity

at the new time instant does not differ significantly from the value at the previ-
ous time instant). Plot the behavior of the stream function for Pr = 1, and for
varying Reynolds number in the range 100 < Re < 1000 (simulations at Re>1000
are more demanding in terms of computational time, hence not required). Com-
pare your results with those shown in Fig. 3.
Note: further details on the cavity flow problem, and on its numerical solution,
can be found in Fletcher, C.A.J, Computational techniques for fluid dynamics –
2 volume (1991), Springer-Verlag Berlin Heidelberg (the relevant section of this
book, Chapter 17.3, pag. 373-379, has been included at the end of this docu-
ment). [+2 ADDITIONAL POINT]

2. Assume now a periodic velocity, u(t) = sin(ωt), at the upper boundary. The
Reynolds number is equal to Re = 2000. Consider different values of ω: ω = 1/3,
ω = 1/2, ω = 3/4. Initial conditions are as in point 1. Plot the behavior of the
concentration in time (possibly an animation, see lecture). [+1 ADDITIONAL
POINT]

Produce plots and movies to support your conclusions (for your convenience, you can
take plots and movies presented during the lecture as reference for the purpose).
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Figure 3: Reference results for the streamfuction in the cavity flow problem (required
for point 1). First row, Re = 100 (left) and Re = 400 (right). Second row,
Re = 1000 (left) and Re = 2000 (right). Third row, Re = 5000 (left) and
Re = 7500 (right).
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17.3 Vorticity, Stream Function Variables 373 

mixed interpolation (u, v, p) formulation. For quadratically-interpolated velocity 
on elements with curved sides (to suit irregular geometries) the consistent penalty 
function formulation is more accurate (Engelman et al. 1982) than the use of 
reduced integration and theoretically better supported. 

The finite element method lends itself to the construction of general-purpose 
codes for solving coupled fluid flow, heat transfer problems in complicated geo-
metric domains. FIDAP (Fluid Dynamic Analysis Program) is such a general-
purpose code and is described by Engelman (1982). A representative problem that 
can be successfully modelled by FIDAP is indicated in Fig. 17.11. 

A conduit passing through a wing fuel tank contains three electrical wires at 
different temperatures. FIDAP determines the natural convection in the air gap 
surrounding the wires. Shown in Fig. 17.11 are the finite element grid, temperature 
contours, velocity vectors and streamlines for a Rayleigh number of 800000. The 
solution indicates thermal plumes rising from the hot wire and dropping from the 
cold wire. The grid contains 2654 nodes and 624 nine-node quadrilateral elements. 

17.3 Vorticity, Stream Function Variables 

As an alternative to solving the governing equations in primitive variables it is 
possible to avoid the explicit appearance of the pressure by introducing the 
vorticity and stream function as dependent variables (Sect. 11.5.1), at least in two 
dimensions. 

In two-dimensional flow the vorticity vector 

ú Z Å ì ê ä =q 

has a single component, which is defined conventionally as 

(= ou _ ov . 
oy ox 

(17.88) 

(17.89) 

The transport equation for the vorticity (11.85) with the aid of the continuity 
equation (17.1) is 

(17.90) 

where the Reynolds number Re= Uoo L/ v. In two dimensions a stream function can 
be defined by 

oljl 
U= oy and 

oljl 
V=- -oX ' (17.91) 

Fletcher, C.A.J, Computational techniques for fluid dynamics – 2 volume (1991)



374 17. Incompressible Viscous Flow 

and substitution into (17.89) produces the following Poisson equation for the 
stream function: 

(17.92) 

Equations (17.90- 92) constitute the governing equations for the vortIcIty 
stream function formulation of incompressible laminar flow. Strictly by substitut-
ing (17.91) into (17.90) it is possible to eliminate the explicit appearance of u and v. 
However, such a formulation may produce less accurate solutions although it 
does save the additional storage of u and v. Initial and boundary conditions to suit 
(17.90-92) are discussed in Sect. 11.5.1. 

The system of equations (17.90-92) is applicable to both steady and unsteady 
laminar viscous flow. However, only the vorticity transport equation (17.90) 
depends explicitly on time. Consequently, for unsteady problems (17.92) implies 
that the stream function field must be determined to be compatible with the time-
dependent vorticity distribution at every time-step. 

For unsteady problems (17.90) is parabolic in time if u and v are known. Thus it 
can be marched efficiently in time using an ADI or approximation factorisation 
technique (Sect. 8.2). At each time step the discrete form of (17.92) is solved for t/!. 
Equation (17.92) is strongly elliptic if ( is known and can be solved by iterative 
(Sect. 6.3) or direct methods (Sect. 6.2). Since (17.92) is a Poisson equation very 
efficient direct methods (Sect. 6.2.6) are available if the grid is uniform. 

For steady flow problems, (17.91, 92) and the steady form of(17.90) are a system 
of elliptic partial differential equations. Since (17.90) is nonlinear it is necessary to 
employ an iterative algorithm. At each step of the iteration (17.90 and 92) are used 
to update the ( and t/! solutions either sequ'entially or as a coupled system. Gupta 
and Manohar (1979) employ a sequential algorithm. 

It is necessary to use under-relaxation in determining boundary values of the 
vorticity, to provide a Dirichlet boundary condition for the steady form of (17.90). 
The cause of this problem is that physical boundary conditions are available on t/! 
and at/! / an but none on (. When numerical boundary conditions are constructed 
for ( which satisfy the integral boundary condition (11.90), no under-relaxation is 
required (Quartapelle and Valz-Gris 1981), even though a sequential algorithm is 
used. 

However, if the steady form of (17.90 and 92) are solved as a coupled system the 
two boundary conditions on t/! and at/l! an are sufficient. Campion-Renson and 
Crochet (1978) use such a formulation with a finite element method to examine the 
flow in a driven cavity. No numerical boundary condition for ( is required. 

The pseudotransient strategy (Sect. 6:4) offers an alternative path to obtain the 
steady flow solution. To implement the pseudotransient approach (17.92) is 
replaced by 

ú ú =- { ú Wú =+ ú Wú =- ( } = 0 . (17.93) 

Fletcher, C.A.J, Computational techniques for fluid dynamics – 2 volume (1991)



17.3 Vorticity, Stream Function Variables 375 

When the steady state is reached (17.93) reverts to (17.92). The choice of the 
time-step At that appears after discretisation of (17.93) provides an additional level 
of control over the pseudo transient iteration. The sequential versus coupled 
treatment of (17.90 and 93) is also relevant to the pseudo transient strategy. Typical 
examples are provided in the next section. 

17.3.1 Finite Difference Formulations 

In this section we consider a typical sequential and a typical coupled solution 
algorithm for the steady laminar flow in a driven cavity (Fig. 17.12). The lid of the 
cavity moves continuously to the right with a velocity u = 1. No-slip boundary 
conditions on the velocity components u and v are equivalent, through (17.91), to 
the indicated boundary conditions on '" and a", / an. 

u .. l.v .. O 
A---

i 

y 

8 
x ., _", _, Ie Fig. 17.12. Two-dimensional driven cavity 
•• 0. a./ay=o 

A sequential algorithm due to Mallinson and de Vahl Davis (1973) is described 
which is based on a pseudo transient solution of (17.90 and 93). In this formulation 
uniform-grid three-point centred difference formulae are introduced for first and 
second spatial derivatives. In the notation of Chap. 8, 

v(u() 2 a2( _ 2 
--ax-=LAuOi,k+O(Ax ), ay2 -LYY(i,k+O(Ay ), etc., 

where 

L (u r ). = (uOi + 1,k - (uOi-l,k and 
x ." J, k 2Ax ' (17.94) 

Mallinson and de Vahl Davis write the semi-discrete form of (17.90) as 

1 a(· k 
-+=(Ax+AYKJ· k' where (17.95) 
8 ut ' 

AX(i,k=(I / Re)Lxx(i,k-Lx(UOi,k , 

AY(i,k = (l / Re)LYY(i,k - Ly(VOi.k , 

Fletcher, C.A.J, Computational techniques for fluid dynamics – 2 volume (1991)
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and e is a relaxation parameter that can be varied spatially. When all grid points 
are considered the following vector equation results: 

(17.96) 

The elements of the matrices -1 x and -1Y can be obtained from (17.94). 
Equation (17.96) and an equivalent semi-discrete vector equation, based on 

(17.93), are advanced in time using an algorithm introduced by Samarskii and 
Andreev (1963), 

[I -0.5e At J N u z ^ ú G Z É ^ í x J N ñ H J N ó z E å = , 

[I -0.5e At J N v z ^ ú å H ä =Z ^ ú G = and 

ú å =+ 1 = ú å =+ ̂ ú å =+ 1 . 

(17.97) 

It is clear that (17.97) is equivalent to (8.23 and 24) with {J = 0.5 and the U and v 
terms in -1\ -1Y evaluated at time-level n. This is essentially an approximate 
factorisation with Crank- Nicolson time differencing. A consideration of the modi-
fied Newton method (Sects.6.4 and 10.4.3) suggests that setting {J = 1 would 
produce a more rapid convergence to the steady state. 

Mallinson and de Vahl Davis apply the Samarskii and Andreev scheme 
sequentially to (17.93 and 90). They find that the fastest convergence corresponds 
to ^ í ú MK U ^ ñ O Z MK U ^ ó O =and ^ ê ú R MÉ ^ í K =De Vahl Davis and Mallinson (1976) use 
this algorithm to compare three-point central differencing and two-point upwind 
differencing for the convective terms in (17.90) for large Reynolds numbers. Clearly 
the higher-order upwind schemes (Sects. 9.3.2 and 17.1.5) could be incorporated 
into the present method with some modification of the implicit algorithm. 

When solving (17.93) for the driven cavity problem the Dirichlet boundary 
condition for", is used. When solving (17.90) a Dirichlet boundary condition for (is 
constructed. How this is done is indicated in Sect. 17.3.2. 

Rubin and Khosla (1981) solve (17.90 and 92) as a coupled system using a 
modified strongly implicit procedure (Sect. 6.3.3). To obtain a diagonally dominant 
system of coupled equations for large values of Re the following discretisation of 
o(uo;ox is introduced: 

ç ú X F =ú =I1xL; (uOj,t 1 + (1-l1x)L; (uOj,! 1 + 0.5Ax(l- 2I1x)LxAuOj,k' (17.98) 

and I1x=O if uj •k ú =0 and I1x= 1 if uj •k < O. The above scheme due to Khosla and 
Rubin (1974) is an upwind scheme at the implicit level (n + 1). However, under 
steady-state conditions it reverts to a three-point centred finite difference scheme. 

Fletcher, C.A.J, Computational techniques for fluid dynamics – 2 volume (1991)
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Using (17.98) and an equivalent form for o(vO/oy, but assuming u, v> 0, the 
discrete form of (17.90 and 92) can be written 

yn+ 1 1 
"j,k L-( y )n+l L-( y)n+l {L +L }yn+l Tt + x U" j,k + y v" j,k - Re xx yy "j, k 

(17.99) 

(17.100) 

Equations (17.99 and 100) constitute a 2 x 2 system of equations which is diagonally 
dominant and couples together implicit (n + 1) values of, and", at grid points 
(j-l, k), (j, k), (j + 1, k), (j, k-l) and (j, k+ 1). The velocity components in (17.99) 
are evaluated at the explicit (n) time level. If (17.99 and 100) at all interior nodes are 
considered collectively the resulting sparse 2 x 2 block matrix equation can be 

RE=lOOOO, UNIFORM GRID ( 257X257 ) 
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Fig. 17.13. Streamline pattern for flow in a driven cavity at Re = 10 ()()() (after Ghia et aI., 1982; reprinted 
with permission of Academic Press) 
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solved efficiently using the strongly implicit procedure (Sect. 6.3.3). The details are 
provided by Rubin and Khosla (1981). Because of the strong coupling between e 
and t/! at the implicit time level no under-relaxation is required for stability when 
implementing the vorticity boundary condition. 

Ghia et al. (1982) combine the Rubin and Khosla formulation with multigrid 
(Sect. 6.3.5) to obtain the flow behaviour in a driven cavity (Fig. 17.12) for Reynolds 
numbers up to 10000 on a 257 x 257 uniform grid. A typical result is shown in 
Fig. 17.13. The flow is characterised by a primary eddy filling most of the cavity 
and a sequence of counterrotating corner eddies. Ghia et al. note that the use of 
multigrid produces an algorithm that is about four times more efficient than using 
the strongly implicit procedure conventionally on the finest grid. 

17.3.2 Boundary Condition Implementation 

The implementation of the boundary conditions for the e, t/! formulation will be 
discussed in this section. Most attention will be given to the construction of the 
vorticity boundary condition at the solid surface. However, the prescription of 
appropriate boundary conditions at inflow and outflow boundaries is also im-
portant and will be discussed in relation to the flow past a backward-facing step. 

As indicated in Fig. 17.12 the no-slip boundary conditions at a solid surface are 
equivalent to 

at/! 
t/!=O and an =g . (17.101) 

The first boundary condition is used with the Poisson equation for the 
streamfunction (17.92). The second boundary condition is used in the construction 
of a boundary condition for the vorticity. This will be illustrated for the lid (AD in 
Fig. 17.12). A Taylor series expansion of the streamfunction about the grid point 
(j, k) on AD gives 

From the discrete form of (17.92) and (17.101a), 

'/'. k=O and [at/!] =g . . '1'), ay . ) 
) , k 

Consequently (17.1 02) can be rearranged to give 

2 
ej,k = L1y2 (t/!j ,k -1 + L1y gj) + O(L1y) . 

(17.102) 

(17.103) 

(17.104) 

Fletcher, C.A.J, Computational techniques for fluid dynamics – 2 volume (1991)
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This first-order formula was first used by Thorn (1933) and has been used 
extensively since. Comparable formulae can be readily obtained for the other 
surfaces. 

Since a second-order accurate discretisation is used in the interior it is desirable 
to use a second-order accurate implementation of the boundary conditions 
(Sect. 7.3). This can be achieved as follows. 

A second-order implementation of (17.103) is 

(17.105) 

In addition, a third-order accurate expressions for [ol/l /OY]j,k is 

(17.106) 

The nodal value I/Ij,k+ 1 lies outside of the computational domain and is eliminated 
from (17.105 and 106) to give 

(17.107) 

This form is attributed to Jensen (1959) by Roache (1972) and is used by Pearson 
(1965) and Ghia et at. (1982). 

Equation (17.107) produces more accurate solutions than the use of (17.104) in 
the comparative tests of Gupta and Manohar (1979). However, when used in a 
sequential algorithm more iterations are required using (17.107), and for large 
values of Re divergence may occur even when the boundary value of the vorticity is 
under-relaxed. When used in a coupled algorithm (17.107) causes no particular 
difficulty. 

An alternative vorticity boundary condition for , is available in a pseudo-
transient formulation, 

(17.108) 

This appears to provide a more direct implementation of the boundary condition 
(17.101b). The relaxation parameter p must be chosen appropriately (Israeli 1972) 
to ensure convergence. However, Peyret and Taylor (1983, p. 187) point out a 
rather direct link with a vorticity boundary value evaluation via (17.104), as 
follows. 

At the (n + l)-th step of a pseudotransient formulation the boundary value for 
the vorticity is given by 

(17.109) 
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