
NSSC 2 - Assignement 3

Bianchi Riccardo, Kapla Daniel, Kuen Jakob, Müller David

May 17, 2022

1 Numerical solution of the di�usion equation in a �nite domain

We are given the 1D unsteady diffusion equation

∂C

∂t
−D

∂2C

∂x2
= 0 (1)

with a scalar diffusion coefficient D = 10−6. The domain size is h which is discretized with Nx points to
give the grid space ∆x with a time step ∆t. The initial condition is C = 0 inside the domain.

Furthermore, denote with Nt ∈ N are the number of time steps of the simulation where t0 = 0 is the
initial time. All Nt discretized time points tn = n∆t leading to the final time point of the simulation
as tNt

= Nt∆t. The discretized x points of the domain are xi = (i − 1)∆x = (i − 1)h/(Nx − 1) for
i = 1, ..., Nx. This gives exactly Nx grid points with equal distance between adjacent points on the
domain [0, h] with the first point x1 = 0 and the last point xNx = h.

In the following we will also use the short hand notation

Cn
i = C(xi, tn), ∂k

xC
n
i =

∂kC(x, t)

∂xk

∣∣∣∣
x=xi,t=tn

, ∂k
t C

n
i =

∂kC(x, t)

∂tk

∣∣∣∣
x=xi,t=tn

for k ∈ N as well as i and n are the space and time discretization indices, respectively. To distringuish
between the exact solution and the approximation we add a “hat” ̂ to the approximation. For example
Cn

i is the true value and Ĉn
i is the discretized solution with discretization errors at the evaluation point

(xi, tn).
Furthermore, define

d =
D∆t

∆x2
.

1.1 Explicit scheme with Dirichlet/Neumann BC

Given the Dirichlet boundary conditions C(0, t) = 0 and the Neumann boundary conditions ∂xC(h, t) =
0. First we derive a 2nd order explicit finite difference approach with a 1st order discretization in time
(see Figure 1).

To derive a second order scheme (assuming C is three time continuously differentiable as a function
from [0, h]× R+ → R) in space we first considure the Taylor expantion of C with respect to x given by

C(x + ∆x, t) = C(x, t) + ∂xC(x, t)∆x + ∂2
xC(x, t)

∆x2

2
+ ∂3

xC(x, t)
∆x3

6
+O(∆x4).

Replace ∆x with ±∆x and add the two equation together which gives

C(x + ∆x, t) + C(x−∆x, t) = 2C(x, t) + ∂2
xC(x, t)∆x2 +O(∆x4).

The first and third order terms drop out due to different signs. Finally, this results in

∂2
xC(x, t) =

C(x + ∆x, t)− 2C(x, t) + C(x−∆x, t)

∆x2
+O(∆x2)

1

x

t

tn

xi

explicit

x

t

tn

xi

implicit

Figure 1: Dependency relation for the explicit (left) and implicit (right) finite difference approximation
at a grid point indexed (i, n).

which is an approximation of the second derivative with error proportional to ∆x2. For the first order
approximation in time the same trick can be used except that only the first two terms of the Taylor
expantion need to be considured.

Therefore, the 2nd order scheme for space and 1st order in time at (i, n) using the explicit scheme
derive as

∂2
xĈ

n
i =

Ĉn
i−1 − 2Ĉn

i + Ĉn
i+1

∆x2
, ∂tĈ

n
i =

Ĉn+1
i − Ĉn

i

∆t
.

Substitution into (1) yields after rearranging the update rule for internal points as

Ĉn+1
i = Ĉn

i +
D∆t

∆x2
(Ĉn

i−1 − 2Ĉn
i + Ĉn

i+1). (2)

This holds at xi where i = 2, ..., Nx − 1, or in other words, everywhere inside the space domain except
the boundary. The boundary needs to be handled seperately. The left boundary condition is a Dirichlet
constraint which is simply a constant giving Cn

1 = 1 for all time while the Neumann condition on the
right requires an additional discretization step for computing the next value. To achieve a 2nd order
discretization scheme it is usualy required to take the sum/difference of an Taylor expantion to the left
and right direction at a given point.However, on the boundary there is no point at the right, which can be
simply solved by adding a ghost point xNx+1 to the system (which will not show up in the final scheme).
This leads to the two 3rd order expantions evaluated at the right boundary as

Cn
Nx−1 = Cn

Nx
− ∂xC

n
Nx

∆x + ∂2
xC

n
Nx

+O(∆x3),

Cn
Nx+1 = Cn

Nx
+ ∂xC

n
Nx

∆x + ∂2
xC

n
Nx

+O(∆x3).

Taking the difference of both equations gives

0 = ∂xC
n
Nx

∆x =
Cn

Nx−1 − Cn
Nx+1

2∆x
+O(∆x2).

which yields a 2nd order equation for the Neumann BC on the right as

Cn
Nx−1 = Cn

Nx+1.

This results in an system of equations containing the entire system (including the boundaryies) which
reads

Ĉn+1
1 = 1,

Ĉn+1
i = dĈn

i−1 + (1− 2d)Ĉn
i + dĈn

i+1, i = 2, ..., Nx − 1

Ĉn+1
Nx

= 2dĈn
Nx−1 + (1− 2d)Ĉn

Nx
.

or in matrix form
Cn+1 = A1C

n

2

for a tridiagonal matrix A1 of dimensions Nx ×Nx

A1 =

1 0
d 1− 2d d

d 1− 2d d

d 1− 2d
. . .

. d
d 1− 2d d

2d 1− 2d

.

Figure 2: Comparison for stable (left, d = 0.48 ≤ 0.5) vs. unstable (right, d = 0.55 > 0.5). At the top
the simulation snapshot after 120 time steps and at the bottom after 1000 timesteps.

1.2 Explicit scheme with Dirichlet BC at both boundaries

In this task two Dirichlet boundary conditions are given. The new boundary condition is a Dirichlet BC
with Cn

Nx
= 0 which alters the equation system from Section 1.1 in the last two equations to

Ĉn+1
1 = 1,

Ĉn+1
i = dĈn

i−1 + (1− 2d)Ĉn
i + dĈn

i+1, i = 2, ..., Nx − 2

Ĉn+1
Nx−1 = dĈn

Nx−2 + (1− 2d)Ĉn
Nx−1,

Ĉn+1
Nx

= 0.

3

which yields to a new tridiagonal matrix A2 of size Nx ×Nx for the update rule Cn+1 = A2C
n as

A2 =

1 0
d 1− 2d d

d 1− 2d d

d 1− 2d
. . .

. d
d 1− 2d 0

0 0

.

See Figure 3 for limt→∞ C(x, t) simulation (many timesteps) for subtask 1 and 2. In comparison both
lead to a straight line solution (last energy) such that the Dirichlet or Neumann BC are fullfilled.

Figure 3: Solution from Section 1.1 (left) and Section 1.2 (right) for t→∞ simulated by setting number
of time steps to Nt = 20000.

1.3 Implicit scheme with Dirichlet/Neumann BC

The following computations are similar in nature to the explicit scheme. The implicit discretization for
the derivatives are (see: Figure 1)

∂2
xĈ

n+1
i =

Ĉn+1
i−1 − 2Ĉn+1

i + Ĉn+1
i+1

∆x2
, ∂tĈ

n
i =

Ĉn+1
i − Ĉn

i

∆t
.

Substitution into (1) gives the implicit (inverse) update rules

Ĉn
1 = Ĉn+1

1 = 1,

Ĉn
i = −dĈn+1

i−1 + (1 + 2d)Ĉn+1
i − dĈn+1

i+1 i = 2, ..., Nx − 1

Ĉn
Nx

= −2dĈn+1
Nx−1 + (1 + 2d)Ĉn+1

Nx

which leads again to an matrix equation

Cn = A3C
n+1

where the Nx ×Nx tridiagonal matrix A3 has the form

A3 =

1 0
−d 1 + 2d −d

−d 1 + 2d −d

−d 1 + 2d
. . .

. −d
−d 1 + 2d −d

−2d 1 + 2d

4

and the update is performed by solving for Cn+1.

Figure 4: Comparison of all four subtasks. As expected 1.1, 1.3 and 1.4 solve the same probelm and as
such have (basically) identical solution while the subtask 1.2 solves for different BC (Dirichlet) which is
fullfilled.

1.4 Second order in time for implicit scheme with Dirichlet/Neumann BC

x

t

tn+1/2

xi

Crank-Nicolson

Figure 5: Crank-Nicolson dependency relations.

To derive the second order accurate scheme in time one uses the Crank-Nicolson approach to derive
the descritization at the time midpoints tn+1/2 = (n + 1/2)∆t which are indexed with n + 1/2.

By expantion into ±∆t/2 at the midpoints one get

Cn
i = C

n+1/2
i − ∂tC

n+1/2
i

∆t

2
+ ∂2

tC
n+1/2
i

∆t2

8
+O(∆t3),

Cn+1
i = C

n+1/2
i + ∂tC

n+1/2
i

∆t

2
+ ∂2

tC
n+1/2
i

∆t2

8
+O(∆t3).

5

Taking the difference yields a 2nd order approx at the time midpoints

∂tC
n+1/2
i =

Cn+1
i − Cn

i

∆t
+O(∆t2).

while the 2nd order space discretization is analog to above but evaluated also at (xi, tn+1/2) to get

∂2
xC

n+1/2
i =

Cn+1
i−1 − 2Cn+1

i + Cn+1
i+1

∆x2
+O(∆x2)

leading to an second order in time and space discretization scheme

∂tĈ
n+1/2
i −D∂2

xĈ
n+1/2
i = O(∆x2 + ∆t2).

Next one need to ensure the evaluation to be done at the known grid points instead of the unknown
time midpoints. Therefore, replacing the evaluation at the time midpoints by the time mean of the two
direct neighbouring grid points

Ĉ
n+1/2
i =

Ĉn
i + Ĉn+1

i

2
.

After a bit of algebra and consideration of the Dirichlet and Neumann BC one end up with

Ĉn+1
1 = Ĉn

1 = 1,

Ĉn+1
i − d

2
Ĉn+1

i−1 + dCn+1
i − d

2
Ĉn+1

i+1 = Cn
i +

d

2
Ĉn

i−1 − dCn
i +

d

2
Ĉn

i+1, i = 2, ..., Nx − 1,

Ĉn+1
i − dĈn+1

Nx−1 + dCn+1
Nx

= Cn
i + dĈn

Nx−1 − dCn
Nx

.

To write this again in a compact matrix equation system one defines the Nx ×Nx matrix A4 as

A4 =

0 0
−d/2 d −d/2

−d/2 d
. . .

. −d/2
−d/2 d −d/2

−d d

then the entire system has the form

(I + A4)Cn+1 = (I −A4)Cn

where I is the identity. Again, the update is performed by solving this tridiagonal system for Cn+1.
For comparison against the other methods see Figure 4.

1.5 Notes on Implementation

All four tasks follow the same basic sructure which can be written as a generalized linear system of the
form

LCn+1 = RCn

for updating the solution by one time step. The two matrices are dependent on the used scheme and the
boundary conditions, see Table 1.

As a boild down solver the following is sufficient to compute the solution given an initial solution
C0 (argument C) with the appropriately defined matrices L,R (arguments L, R) which incorporate
the scheme, space and time step size ∆x,∆t as well as the dispersion parameter D and the boundary
conditions) at time T = Nt∆ (implicitly defined through the parameter nx).

1 def solve(C, L, R, nt):
2 for t in range(nt):
3 rhs = C if R is None else R @ C
4 C = rhs if L is None else solve_banded((1, 1), L.data, rhs)
5 return C

6

Task L R
1.1 I A1

1.2 I A2

1.3 A3 I
1.4 I + A4 I −A4

Table 1: Left and right hand side matrices of the general update rule LCn+1 = RCn with Ai depending
on the subtask as defined in Section 1.1 till 1.4 and I the identity matrix.

This code assumes C to be a 1D numpy array as well as L,R to by scipy.sparse.spmatrix sparse
tridiagonal matrices or None which is equivalent to the identity matrix.

The additional code in the script task01.py contains setting up the needed matrices and plotting.

7

2 Numerical solution of the linear advection equation in a peri-

odic domain

First a few words about the upwind scheme. With a positive U the upwind means that it is discretized
by “going left”, meaning into the opposite direction of the current position. In a similar faschion as above
this leads to the discretization

∂xC
n
i =

Cn
i − Cn

i−1

∆x
+O(∆x),

∂tC
n+1
i =

Cn+1
i − Cn

i

∆t
+O(∆t).

One ends up with a first order discretized equation

0 =
Ĉn+1

i − Ĉn
i

∆t
+ U

Ĉn
i − Ĉn

i−1

∆x

leading to the update rule

Cn+1
i = (1− C0)Cn

i + CoC
n
i−1, i = 2, ..., Nx

with the current C0 = U∆x
∆t . The boundary condition enforces periodizity which means Cn

1 = Cn
Nx

and
therefore the update for the left most point is

Cn+1
1 = (1− C0)Cn

1 + CoC
n
Nx

.

Figure 6: For initial Gauss wavelet (top) and Square wavelet (bottom) after 150 iterations (one leap
around the boundary) with different current C0. Left: C0 = 0.7, Center: C0 = 1 (perfect) and Right:
C0 = 1.1 (unstable).

For implementation one gets a very simple solver which computes the wave form at time T = Nt∆t
with ∆t = U∆x/C0 as the following;

1 def solve(C, C0, nt):
2 nx = C.shape[0]
3 im1 = np.array([nx − 1] + list(range(nx − 1)))
4 for t in range(nt):
5 C = (1 − C0) ∗ C + C0 ∗ C[im1]
6 return C

where C is the initial wave form, the constant C0 is the current C0 and nt is the number of time steps
to be performed. Again, the attached script task02.py implements this with additional code for setting
up the initial conditions and plotting.

8

	Numerical solution of the diffusion equation in a finite domain
	Explicit scheme with Dirichlet/Neumann BC
	Explicit scheme with Dirichlet BC at both boundaries
	Implicit scheme with Dirichlet/Neumann BC
	Second order in time for implicit scheme with Dirichlet/Neumann BC
	Notes on Implementation

	Numerical solution of the linear advection equation in a periodic domain

