
Numerical Simulation and Scientific Computing II
Exercise 2

Submission is due by the end of Thursday 2022-05-05, 10 a.m. (submit through TUWEL).

• Include the name of all group members in your submission.

• Submit everything (your Python scripts, your own module files and any required input, resource or
output files) as a single zip file per task.

• The Python scripts must work in a virtual environment created according to the instructions below,
and with the command-line parameters described.

• The first line in any runnable script must be
#!/usr/bin/env python

• Try to format your code at least approximately following the PEP 8 style guide. Using the
yapf formatter is highly recommended – see below for some details. Always test your code after
reformatting.

Setting up a virtual environment
When working with Python projects, it is often good practice to keep separate environments for each
of them, to avoid interference and maximize flexibility, e.g. to keep different versions of a module for
different projects. This section provides a set of quick instructions on how to create and use one of those
virtual environments for this exercise.

1. Make sure that Python 3.8 or higher and pip are installed. For instance, in Ubuntu 20.04 with
Python 3.8:
sudo apt install python3-pip python3.8-venv

2. Create a directory to keep everything tidy:
mkdir ~/molecular_dynamics

3. Move to the directory and create a virtual environment:
cd ~/molecular_dynamics && python3 -m venv md

4. Activate the environment:
source md/bin/activate

5. Install the required packages in the right order:
pip install wheel
pip install numpy scipy matplotlib yapf
pip install jax jaxlib

6. Optionally, if you want JAX to take advantage of your GPU and you have CUDA installed, you
can run
pip install --upgrade "jax[cuda]" \

-f https://storage.googleapis.com/jax-releases/jax_releases.html

To leave the virtual environment, simply run
deactivate
To enter it again at any time, use the command

1

https://www.python.org/dev/peps/pep-0008/


source ~/molecular_dynamics/md/bin/activate
When the virtual enviroment is active, the string (md) appears to the left of the prompt, and invoking
python automatically calls the right interpreter.

The sequence of steps above also installs yapf, a popular Python code formatter, inside the virtual
enviroment. It can be invoked as
yapf -i example1.py example2.py example3.py ...
to apply a nice format to an arbitrary number of Python files.

A toy molecular dynamics simulation
Your task in this exercise is to simulate the time evolution of 𝑀 particles, each with a mass (𝑚) of
18.998403 atomic mass units, by integrating Newton’s equations of motion. Their potential energy is
described using the Morse model:

𝐸pot(𝒙1 … 𝒙𝑀) =
𝑀−1
∑
𝑖=1

𝑀
∑

𝑗=𝑖+1
𝑉Morse(∣𝒙𝑖 − 𝒙𝑗∣), where (1a)

𝑉Morse(𝑟) = 𝐷𝑒 [𝑒−2𝛼(𝑟−𝑟𝑒) − 2𝑒−𝛼(𝑟−𝑟𝑒)] . (1b)

𝒙𝑖 is the position of atom 𝑖 in 3D space, and the values of the parameters of the model are:

𝐷𝑒 = 1.6 eV
𝛼 = 3.028 Å−1

𝑟𝑒 = 1.411 Å

This is an exceedingly poor approximation to a real system from the standpoint of realism, but it is
very simple to implement and runs fast enough not to require any parallelization.

The force on atom 𝑖 (denoted as 𝒇𝑖) is just the gradient of 𝐸pot with respect to 𝒙𝑖 with its sign
changed, and the corresponding acceleration is computed as 𝒂𝑖 = 𝒇𝑖/𝑚. Use the velocity Verlet algorithm
to integrate the equations of motion:

𝒙𝑖(𝑡 + 𝛥𝑡) = 𝒙𝑖(𝑡) + 𝒗𝑖(𝑡)𝛥𝑡 + 1
2

𝒂𝑖(𝑡)(𝛥𝑡)2 and (2a)

𝒗𝑖(𝑡 + 𝛥𝑡) = 𝒗𝑖(𝑡) + 𝒂𝑖(𝑡) + 𝒂𝑖(𝑡 + 𝛥𝑡)
2

𝛥𝑡, (2b)

where 𝒗𝑖 is the velocity of atom 𝑖 and 𝛥𝑡 is the time step.
Use periodic boundary conditions corresponding to a cubic simulation box with side 𝐿, along with the

minimum image convention.

File format
Your code must be able to read and write snapshots of the simulation box in the following ad-hoc,
text-based format:

Line 1: Number of atoms (integer)

Line 2: Arbitrary comment/description (free format)

Line 3: Box side length (decimal number)

Line 4: 𝑥1 𝑦1 𝑧1 𝑣(𝑥)
1 𝑣(𝑦)

1 𝑣(𝑧)
1 (six decimal numbers)

Line 5: 𝑥2 𝑦2 𝑧2 𝑣(𝑥)
2 𝑣(𝑦)

2 𝑣(𝑧)
2 (six decimal numbers)

⋮

2



Line M+3: 𝑥𝑀 𝑦𝑀 𝑧𝑀 𝑣(𝑥)
𝑀 𝑣(𝑦)

𝑀 𝑣(𝑧)
𝑀 (six decimal numbers)

Any number of spaces and tabs can appear around and between fields, and are not considered significant.
Integers and decimal numbers are defined as anything the Python int() and float() built-ins can parse,
respectively.

Task 1: Questions (2 points)
(a) Describe a suitable and consistent system of units for molecular dynamics, and specifically the units

of length, mass, velocity, energy and time.

(b) Explain the advantages of automatic differentiation as a method to calculate forces.

(c) When the potential energy of a system is described using the Morse model, how does the number of
calculations per time step scale with the number of particles? Why?

(d) Describe a strategy to make that number of calculations proportional to the number of particles.

Task 2: Generation of initial conditions (3 points)
Create a Python script that takes three command-line arguments, namely

• 𝑀, a number of particles;

• 𝐿, a side length for the simulation box, in Å; and

• 𝑇, a temperature in K used to generate the initial conditions

and generates a ”relaxed” (i.e., low-energy) starting configuration for a molecular dynamics simulation.
Specifically, the script must:

• Start by placing the 𝑀 particles at random points in the box. The distribution needs not be uniform
– in fact, it is desirable to avoid placing two particles too close together.

• Move the particles to a local energy minimum using the conjugate-gradients (CG) minimizer
implemented as part of the scipy.optimize.minimize function.

• Draw random velocities from a Gaussian distribution with zero mean and a standard deviation
√𝑘B𝑇 /𝑚, where 𝑘B is the Boltzmann constant (use numpy.random.multivariate_normal).

• Obtain the average velocity ̄𝒗 = 1
𝑀

𝑀
∑
𝑖=1

𝒗𝑖 and subtract it from each individual velocity, i.e., assign

𝒗𝑖 ⟵ 𝒗𝑖 − ̄𝒗,

so that the velocity of the center of mass of the system is zero.

• Save the result in the format described above.

To complete this task you must implement the calculation of the potential energy and the forces in
the Morse model. For the latter, use automatic differentiation as implemented in the high-performance
jax library. As a quick sanity test, check that the sum of all forces along each of the Cartesian axes is
close to zero.

3



Task 3: Trajectory generation (2 points)
Write another Python script that takes three arguments:

• input.xyz, the path to a file with a snapshot of the system;

• 𝛥𝑡, a time step; and

• 𝑁, a number of time steps.

The script must integrate Newton’s equations of motion for the system starting with the initial conditions
provided, for a total of 𝑁 − 1 time steps of length 𝛥𝑡, and store the resulting trajectory as a single file
where each frame is written directly after the previous one in the format described in the introduction.

Task 4: Post-processing (3 points)
Write a third Python script that takes, as its single command-line argument, the path to a trajectory file
such as the one generated by the previous script, and generates two outputs:

• A text file with as many lines as time steps are stored in the input trajectory and two columns
containing the following data for each step:

1. The potential energy 𝐸pot.

2. The kinetic energy 𝐸kin = 𝑚
2

𝑀
∑
𝑖=1

|𝒗𝑖|
2.

• A second text file with two columns:

1. The first column contains the values of a variable 𝑟 sampled at regular intervals from 0 to 𝐿/2.
2. The second column contains the fraction of particle pairs at a distance of at most 𝑟, averaged

over the trajectory but discarding the first 25% of it.

Using the three scripts, complete these steps:

1. Create a cubic simulation box with a side length of 15 Å, 1000 particles, and initial velocities
corresponding to a temperature of 300 K.

2. Run a molecular dynamics simulation for one million steps. Check the conservation of the mechanical
energy 𝐸pot + 𝐸kin; tweak the time step and repeat the run until it is conserved.

3. Create a plot of the evolution of the kinetic temperature 𝐸kin/( 3
2 𝑀𝑘B) over time during the

simulation and discuss what is happening.

4. Using only the second half of the trajectory, estimate the specific heat of the system using the
formula

𝑐𝑣 = 𝑘B
⟨𝐸kin⟩2

𝜎2
𝐸kin

, where 𝜎2
𝐸kin

= ⟨(𝐸kin − ⟨𝐸kin⟩)2⟩.

4


