R Package implementing the CVE (Conditional Variance Estimation) Method for SDR (Sufficient Dimension Reduction).
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.
Daniel Kapla 9d0f551dc3 final CRAN re-submition (1.0 -> 1.1) changes in DESCRIPTION pirms 7 mēnešiem
CVarE final CRAN re-submition (1.0 -> 1.1) changes in DESCRIPTION pirms 7 mēnešiem
simulations - add: simulations, pirms 1 gada
.gitattributes renamed package (naming conflict with bioconductor) pirms 7 mēnešiem
.gitignore CRAN submittion pirms 7 mēnešiem
README.md CRAN submittion pirms 7 mēnešiem

README.md

Installation Instructions

The package depends on the mda package (see: mda @ cran.r-project. Therefore the first step is to install the mda package

install.packages("mda")

A release will be available in a few days.

Open R and then the following:

# addapt to download file.
install.packages("path/to/cve_0.2.<end>", repos = NULL)
library(CVarE) # Test installation.

Please consult the man-pages ?install.package and ?library for further information.

Installing Source

Cloning the CVarE repository and using R’s build and install routines from a terminal.

git clone https://git.art-ist.cc/daniel/CVE.git  # Clone repository
cd CVarE                                         # Go into the repository
R CMD build CVarE                                # Build package tarbal
R CMD INSTALL CVarE_1.0.tar.gz                   # Install package

Alternative Installing Source from within R

Using the devtools the package can also be directly installed from within R

library(devtools)                                       # Load the dectools
setwd('<path_to_repo>/CVarE')                           # Go into package root
(path <- build(vignettes = FALSE))                      # Create source package
install.packages(path, repos = NULL, type = "source")   # Install source package
library(CVarE)                                          # Test

Windows / macOS

Installing from source (for any package which contains compiled code, in our case C) on Windows and MacOS requires additional tools. See R Installation and Administration from r-project manuals.

Repository Structure

The repository is structured in two directories, the CVarE/ directory which is the R package root and simulations/ where all simulation scripts can be found (and README.md which is this).