% Generated by roxygen2: do not edit by hand % Please edit documentation in R/predict_dim.R \name{predict_dim} \alias{predict_dim} \title{Estimate Dimension of the Sufficient Reduction.} \usage{ predict_dim(object, ..., method = "CV") } \arguments{ \item{object}{an object of class \code{"cve"}, usually, a result of a call to \code{\link{cve}} or \code{\link{cve.call}}.} \item{...}{ignored.} \item{method}{This parameter specifies which method is used in dimension estimation. It provides three options: \code{'CV'} (default), \code{'elbow'} and \code{'wilcoxon'}.} } \value{ A \code{list} with \describe{ \item{}{criterion for method and \code{k = min.dim, ..., max.dim}.} \item{k}{estimated dimension is the minimizer of the criterion.} } } \description{ This function estimates the dimension, i.e. the rank of \eqn{B}. The default method \code{'CV'} performs leave-one-out (LOO) cross-validation using \code{mars} as follows for \code{k = min.dim, ..., max.dim} a cross-validation via \code{mars} is performed on the dataset \eqn{(Y_i, B_k' X_i)_{i = 1, ..., n}} where \eqn{B_k} is the \eqn{p \times k}{p x k} dimensional CVE estimate. The estimated SDR dimension is the \eqn{k} where the cross-validation mean squared error is minimal. The method \code{'elbow'} estimates the dimension via \eqn{k = argmin_k L_n(V_{p - k})} where \eqn{V_{p - k}} is the space that is orthogonal to the column space of the CVE estimate of \eqn{B_k}. Method \code{'wilcoxon'} finds the minimum using the Wilcoxon test. } \examples{ # create B for simulation B <- rep(1, 5) / sqrt(5) set.seed(21) # creat predictor data x ~ N(0, I_p) x <- matrix(rnorm(500), 100) # simulate response variable # y = f(B'x) + err # with f(x1) = x1 and err ~ N(0, 0.25^2) y <- x \%*\% B + 0.25 * rnorm(100) # Calculate cve for unknown k between min.dim and max.dim. cve.obj.simple <- cve(y ~ x) predict_dim(cve.obj.simple) }