% Generated by roxygen2: do not edit by hand % Please edit documentation in R/CVE.R \name{cve} \alias{cve} \alias{cve.call} \title{Implementation of the CVE method.} \usage{ cve(formula, data, method = "simple", ...) cve.call(X, Y, method = "simple", nObs = nrow(X)^0.5, k, ...) } \arguments{ \item{formula}{Formel for the regression model defining `X`, `Y`. See: \code{\link{formula}}.} \item{data}{data.frame holding data for formula.} \item{method}{The different only differe in the used optimization. All of them are Gradient based optimization on a Stiefel manifold. \itemize{ \item "simple" Simple reduction of stepsize. \item "linesearch" determines stepsize with backtracking linesearch using Armijo-Wolf conditions. \item TODO: further }} \item{...}{Further parameters depending on the used method. TODO: See ...} } \description{ Conditional Variance Estimator (CVE) is a novel sufficient dimension reduction (SDR) method assuming a model \deqn{Y \sim g(B'X) + \epsilon}{Y ~ g(B'X) + epsilon} where B'X is a lower dimensional projection of the predictors. } \examples{ library(CVE) ds <- dataset("M5") X <- ds$X Y <- ds$Y dr <- cve(Y ~ X, k = 1) } \references{ Fertl L, Bura E. Conditional Variance Estimation for Sufficient Dimension Reduction, 2019 }