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Abstract

Conditional Variance Estimation (CVE) is a novel sufficient dimension reduction
(SDR) method for regressions satisfying E(Y |X) = E(Y |B′X), where B′X is a lower
dimensional projection of the predictors. CVE, similarly to its main competitor, the
mean average variance estimation (MAVE), is not based on inverse regression, and
does not require the restrictive linearity and constant variance conditions of moment
based SDR methods. CVE is data-driven and applies to additive error regressions
with continuous predictors and link function. The effectiveness and accuracy of CVE
compared to MAVE and other SDR techniques is demonstrated in simulation studies.
CVE is shown to outperform MAVE in some model set-ups, while it remains largely
on par under most others.
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1 Introduction

Suppose (Y,X′)′ have a joint continuous distribution, where Y ∈ R denotes a univariate

response and X ∈ Rp a p-dimensional covariate vector. We assume that the dependence

of Y and X is modelled by

Y = g(B′X) + ε, (1)

where X is independent of ε with positive definite variance-covariance matrix, Var(X) =

Σx, ε ∈ R is a mean zero random variable with finite Var(ε) = E (ε2) = η2, g is an unknown,

continuous non-constant function, and B = (b1, ...,bk) ∈ Rp×k of rank k ≤ p. Model (1)

states that

E(Y |X) = E(Y |B′X) (2)

and requires the first conditional moment E(Y |X) = g(B′X) contain the entirety of the

information in X about Y to be captured by B′X, so that F (Y |X) = F (Y |B′X), where

F (·|·) denotes the conditional cumulative distribution function (cdf) of the first given the

second argument. That is, Y is statistically independent of X when B′X is given and

replacing X by B′X induces no loss of information for the regression of Y on X.

Identifying the span of B, as only the span{B} is identifiable, suffices in order to identify

the sufficient reduction of X for the regression of Y on X. We assume B is semi-orthogonal;

i.e., B′B = Ik, since a change of coordinate system by an orthogonal transformation does

not alter model (2).

The first split in SDR taxonomy occurs at likelihood versus non-likelihood based meth-

ods. The former, which were developed more recently [6, 5, 7, 3, 2], assume knowledge
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either of the joint family of distributions of (Y,X′)′, or the conditional family of distribu-

tions for X|Y . The latter is the most researched branch of SDR and comprises of three

classes of methods: Inverse regression based, semi-parametric and nonparametric. Reviews

of the former two classes can be found in [1, 17, 14].

The method we propose, the conditional variance estimator, falls in the class of non-

parametric methods. The estimators in this class minimize a criterion that describes the fit

of the dimension reduction models (2) under (1), to the observed data. Since the criterion

involves unknown distributions or regression functions, nonparametric estimation is used to

recover span{B}. Statistical approaches to identify B in (2) include ordinary least squares

and nonparametric multiple index models. The OLS estimator, Σ−1
x cov(X, Y ), always falls

in span{B} [see Theorem 8.3, [14]]. Principal Hessian Directions (pHd, [16]) was the first

SDR estimator to target span{B} in (2). Its main disadvantage is that it requires the so

called linearity and constant variance conditions on the marginal distribution of X. Its

relaxation, Iterative Hessian Transformation [8], still requires the linearity condition in

order to recover vectors in span(B).

The most competitive nonparametric SDR method up to now, has been the minimum

average variance estimation method (MAVE, [23]). MAVE assumes model (1), bounded

fourth derivative covariate density, and g having continuous bounded third derivative. It is

based on a local first order approximation of g in (1) and the minimization of the expected

conditional variance of the response given B′X.

The conditional variance estimator (CVE) also targets and recovers span{B} in models

(1) and (2). The objective function is based on an intuitive idea regarding the directions

in the predictor space that capture the dependence of Y on X along which Y exhibits sig-

nificantly higher variation in contrast to the orthogonal directions along which Y exhibits

markedly less variation. CVE is a fully data-driven estimator that is seen to perform on
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par with MAVE in normal predictor regressions and to outperform it in regressions with

covariate distributions outside the elliptically contoured family, such as normal mixtures, in

simulations. CVE is applicable to regressions with p > n as it targets the orthogonal com-

plement of span{B} and, thus, circumvents the inversion of Σx. Furthermore, in contrast

to MAVE, CVE does not estimate the link function g and requires weaker assumptions on

its smoothness.

The rest of the paper is organized as follows. In Section 2 we define the proposed

conditional variance estimator (CVE) and provide its geometrical motivation. Section 3

proposes the relevant estimators. The estimation optimization algorithm is given in Sec-

tion 4. Statistical properties of the estimators are obtained in Section 5. Simulation studies

are carried out in Section 6 and the Hitters data set is analyzed in Section 7. We conclude

in Section 8.

2 Motivation

Let (Ω,F , P ) be a probability space, and X : Ω→ Rp be a random vector with a continuous

distribution and denote its support by supp(fX). We refer to the following assumptions

when needed in the sequel.

Assumption A.1. Model (1) holds with g : Rk → R non constant in all arguments, X

stochastically independent from ε, E(ε) = 0, Var(ε) = η2 <∞, and Σx is positive definite.

Assumption A.2. The link function g is continuous and X has continuous density fX.

Assumption A.3. E(|Y |4) <∞.

Assumption A.4. supp(fX) is compact.
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Assumption A.5. |Y | < M2 <∞ almost surely.

The set

S(p, q) := {V ∈ Rp×q : V′V = Iq}, (3)

is a Stiefel manifold that comprises of all p× q matrices with orthonormal columns. S(p, q)

is compact and dim(S(p, q)) = pq − q(q + 1)/2 [see [22] and Section 2.1 of [19]]. For

q ≤ p ∈ N and any V ∈ S(p, q), we define

L̃(V, s0) := Var(Y |X ∈ s0 + span{V}) (4)

where s0 ∈ Rp is a shifting point. Since X has a continuous distribution, the set {ω ∈ Ω :

X(ω) ∈ s0 + span{V}} has probability 0 if q < p. Let

fX|X∈s0+span{V}(x) =


fX(s0+Vr1)∫

Rq fX(s0+Vr)dr
if x ∈ s0 + span{V}, r1 = V′(x− s0)

0 otherwise
(5)

Theorem 1 establishes that (5) is a proper density and that L̃(V, s0) in (4), and its gener-

alized version,

L(V) =

∫
Rp

L̃(V,x)fX(x)dx = E
(
L̃(V,X)

)
, (6)

are well-defined using the concept of regular conditional probability [11]. Moreover, Theo-

rem (1) provides its explicit formula.

Theorem 1. Let X be a p-dimensional continuous random vector with density fX(x).

Under assumption A.2, for s0 ∈ supp(fX) ⊂ Rp and V ∈ S(p, q) defined in (3), (5) is a

proper density. Under assumptions A.1, A.2 and A.4, (4) and (6) are well defined and
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continuous for V ∈ S(p, q) and s0 ∈ supp(fX). Moreover,

L̃(V, s0) = µ2(V, s0)− µ1(V, s0)2 + η2 (7)

where

µl(V, s0) :=

∫
Rq

g(B′s0 + B′Vr1)l
fX(s0 + Vr1)∫

Rq fX(s0 + Vr)dr
dr1 =

t(l)(V, s0)

t(0)(V, s0)

with t(l)(V, s0) :=
∫
Rq g(B′s0 + B′Vr1)lfX(s0 + Vr1)dr1.

Theorem 2 provides the statistical motivation for the objective function (6) of the

conditional variance estimator.

Theorem 2. Under assumptions A.1, A.2 and A.4,

(a) For all s0 ∈ Rp and V = (v1, ...,vq) such that there exist u ∈ {1, ..., q} with vu ∈

span{B}, L̃(V, s0) > Var(ε) = η2.

(b) For all s0 ∈ Rp and V ∈ span{B}⊥, L̃(V, s0) = η2.

(c) For all V = (v1, ...,vq) such that there exist u ∈ {1, ..., q} with vu ∈ span{B},

L(V) > η2.

(d) For all V ∈ span{B}⊥, L(V) = η2

Proof. Let s0 ∈ Rp and V = (v1, ...,vq) ∈ Rp×q so that vu ∈ span{B} for some u ∈

{1, ..., q}. To obtain (a), observe (4) yields

L̃(V, s0) = Var
(
g(B′X)|X = s0 + VV′(X− s0)

)
+ Var(ε)

= Var
(
g(B′s0 + B′VV′(X− s0))|X = s0 + VV′(X− s0)

)
+ η2 > η2 (8)
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since B′VV′(X− s0) 6= 0 w.p. 1, and therefore the first term in (8) has positive variance.

For V such that V ⊥ B, B′VV′(X − s0) = 0 and (b) follows. Since s0 is arbitrary yet

constant, (c) and (d) follow.

Theorem (2) also has a geometrical motivation. If X is not random, the deterministic

function Y = g(B′X) is constant in all directions orthogonal to B and varies in all other

directions. If randomness is introduced, as in model (1), then the variation in Y stems only

from ε in all directions orthogonal to B. In all other directions the variation comprises of

the sum of the variation of ε and of g(B′X). In consequence, the objective function (6)

captures the variation of Y as X varies in the column space of V and is minimized in the

directions orthogonal to B.

2.1 Conditional Variance Estimator (CVE)

The objective function L(V) is well defined and continuous by Theorem 1. Let

Vq = argminV∈S(p,q) L(V). (9)

Vq is well defined as the minimizer of a continuous function over the compact set S(p, q).

Corollary 3 follows directly from Theorem 2 and provides the means for identifying the

linear projections of the predictors satisfying (1).

Corollary 3. Under the assumptions of Theorems 1 and 2, the solution of the optimization

problem in (9) is well defined and

(a) span{Vp−k} = span{B}⊥

(b) span{Vp−k}⊥ = span{B}
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where k = dim(span{B}).

The minimizer Vp−k is not unique since for all C ∈ Rq×p−k such that CC′ = Ip−k,

L(VC) = L(V) as L(V) depends on V only through span{V}. Nevertheless, since every

minimizer spans the same subspace, span{B} is uniquely identifiable.

Theorem 2 (c) and (d) lead to the proposed method for the identification of the sufficient

reduction space, span{B}, in (1). Corollary 3 (b) serves as the estimation equation for the

Conditional Variance Estimator at the population level.

Definition 4. Let

Bp−q := V⊥q (10)

The Conditional Variance Estimator is defined to be any basis of span{Vq}⊥.

We can also target B directly by maximizing the objective function L(V). The downside

of this approach is that X either needs to be standardized, or the conditioning argument

needs to be changed to X = s0 + V(V′Σ−1
x V)−1V′Σ−1

x (X − s0), or, equivalently, X =

s0 + PΣ−1
x (span{V})(X − s0), where PM(span{V}) is the orthogonal projection operator with

respect to the inner product 〈x,y〉M = x′My. In either case, the inversion of Σx is

required. Our choice of targeting the orthogonal complement avoids the inversion of Σx,

and the method applies to regressions with p > n, or p ≈ n.

3 Estimation of L(V)

Assume (Yi,X
′
i)
′
i=1,...,n is an i.i.d. sample from model (1). We define

di(V, s0) : = ‖Xi −Ps0+span{V}Xi‖2
2 = ‖Xi − s0‖2

2 − 〈Xi − s0,VV′(Xi − s0)〉

= ‖(Ip −VV′)(Xi − s0)‖2
2 = ‖QV(Xi − s0)‖2

2 (11)
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where 〈·, ·〉 is the usual inner product in Rp, PV = VV′ and QV = Ip−PV. Furthermore,

let hn ∈ R+ represent the width of a slice around the subspace s0 + span{V} that satisfies

hn → 0, nhp−qn →∞.

Let K : R+ → R+ be a positive, non increasing, monotone and bounded function

(i.e. |K(·)| ≤ M1) with
∫
Rq K(‖r‖2

2)dr < ∞ for q ≤ p − 1, which we refer to as kernel.

Examples of such functions include the rectangular, K(z) = cI(z ≤ 1), the Gaussian,

K(z) = c exp(−z2/2), the exponential, K(z) = c exp(−z), and the Epanechnikov kernel,

K(z) = cmax{(1− z2), 0}, where c is a constant. A list of admissible kernel functions are

given in Table 1 of [18]. For i = 1, . . . , n, we let

wi(V, s0) =
K
(
di(V,s0)
hn

)
∑n

j=1 K
(
dj(V,s0)

hn

) (12)

The sample based estimate of L̃(V, s0) is defined as

L̃n(V, s0) :=
n∑
i=1

wi(V, s0)(Yi − ȳ1(V, s0))2 = ȳ2(V, s0)− ȳ1(V, s0)2 (13)

where ȳl(V, s0) =
∑n

i=1wi(V, s0)Y l
i , l = 1, 2. The estimate of the objective function L(V)

in (6) is defined as

Ln(V) :=
1

n

n∑
i=1

L̃n(V,Xi), (14)

where each data point Xi is a shifting point.

Ln(V) depends on the weights wi(V, s0) defined in (12). These are not only stochasti-

cally dependent but also random functions of the parameter V, which is also the estimation

target. This is novel in nonparametric estimation and poses challenges in obtaining theo-

retical properties of the estimator, as the standard probability tools do not apply.
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To obtain an insight as to the choice of L̃n(V, s0) in (13), we consider the rectangular

kernel, K(z) = 1{z≤1}. In this case, L̃n(V, s0) computes the empirical variance of the Yi’s

corresponding to the Xi’s that are no further than hn away from the subspace s0+span{V},

‖Xi − Ps0+span{V}Xi‖2
2 ≤ hn. If a smooth kernel is used, such as the Gaussian in our

simulation studies, then L̃n(V, s0) is also smooth, which allows the computation of gradients

required to solve the optimization problem. We compute the gradient of (13) and (14) for

the Gaussian kernel in Lemma 5, which is proven in the Appendix.

Lemma 5. The gradient of L̃n(V, s0) in (13) is given by

∇VL̃n(V, s0) =
1

h2
n

n∑
i=1

(L̃n(V, s0)− (Yi − ȳ1(V, s0))2)widi∇Vdi(V, s0) ∈ Rp×q,

and the gradient of Ln(V) in (14) is

∇VLn(V) =
1

n

n∑
i=1

∇VL̃n(V,Xi).

3.1 Choosing the bandwidth hn

The performance of CVE depends crucially on the choice of the bandwidth sequence hn that

controls the bias-variance trade-off: the smaller hn is the lower the bias and the higher the

variance and vice versa. Furthermore, the choice of hn depends on p, q, the sample-size n,

and the distribution of X. We assume the bandwidth satisfies the following conditions:(a)

limn→∞ hn = 0, (b) limn→∞ nh
p−q
n =∞, and (c) limp−q→∞ hn =∞. We use a heuristically

motivated rule that performs well in simulation studies.
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Lemma 6. Let M be a p× p positive definite matrix. Then,

tr(M)

p
= argmins>0 ‖M− sIp‖2 (15)

Proof. Let U be the p× p matrix whose columns are the eigenvectors of M corresponding

to its eigenvalues λ1 ≥ . . . ≥ λp > 0. Then, M = Udiag(λ1, ..., λp)U
′, which implies

‖M− sIp‖2
2 = ‖diag(λ1, ..., λp)− sIp‖2

2 =
∑p

l=1(λl− s)2. Taking the derivative with respect

to s, setting it to 0 and solving for s obtains (15), since
∑p

l=1 λl = tr(M).

In order to avoid bandwidth dependence on V, we assume the predictors are multivariate

normal, so that their joint density is approximated by N(µX, σ
2Ip), for σ2 = tr(Σx)/p, by

Lemma 6. Under X ∼ Np(µX, σ
2Ip), X̃i = Xi − Xj ∼ Np(0, 2σ

2Ip) for i 6= j, where we

suppress the dependence on j for notational convenience. Since all data are used as shifting

points, di(V,Xj) = ‖Xi −Xj‖2
2 − (Xi −Xj)

′VV′(Xi −Xj) = ‖X̃i‖2
2 − X̃′iVV′X̃i. Let

nObs := E
(
#{i ∈ {1, ..., n} : X̃i ∈ spanh{V}}

)
= 1 + (n− 1)P(d1(V,X2) ≤ h) = 1 + (n− 1)P(‖X̃‖2

2 − X̃′VV′X̃ ≤ h) (16)

where spanh{V} = {x ∈ Rp : ‖x − Pspan{V}x‖2
2 ≤ h} and X̃ = X − ˜̃X, with ˜̃X an

independent copy of X. nObs is the expected number of points in a slice. Given a user

specified value for nObs, h is the solution to (16).

Let x ∈ Rp. For any V ∈ S(p, q) in (3), there exists an orthonormal basis U ∈ Rp×(p−q)

of span{V}⊥ such that

x = Vr1 + Ur2, (17)

where r1 = V′x, r2 = U′x and U′V = 0,U′U = Ip−q. By (17), X̃ = VR1 + UR2, with

R1 = V′X̃ ∼ N(0, 2σ2Iq),R2 = U′X̃ ∼ N(0, 2σ2Ip−q). Then, X̃′VV′X̃ = ‖R1‖2
2 and
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‖X̃‖2
2 = ‖R1‖2

2 + ‖R2‖2
2. Therefore,

P(‖X̃‖2
2 − X̃′VV′X̃ ≤ h) = P(‖R2‖2

2 ≤ h) = χp−q

(
h

2σ2

)
, (18)

where χp−q is the cdf of a chi-squared distribution with p− q degrees of freedom. Plugging

(18) in (16) obtains

nObs = 1 + (n− 1)χp−q

(
h

2σ2

)
. (19)

Solving (19) for h and Lemma 6 yield the bandwidth used in the simulation studies,

hn(nObs) := χ−1
p−q

(
nObs− 1

n− 1

)
2tr(Σ̂x)

p
, (20)

where Σ̂x =
∑

i(Xi − X̄)(Xi − X̄)′/n and X̄ =
∑

i Xi/n.

In order to ascertain hn satisfies conditions (a), (b) and (c) in the beginning of this

section, a reasonable choice is to set nObs = γ(n) for a function γ(·) with γ(n) → ∞,

γ(n)/n ≤ 1 and γ(n)/n → 0. In the simulations in Section 7, nObs = γ(n) = nβ with

β ∈ (0, 1) is used.

Since the ad-hoc procedure described in this section yields satisfactory results, we opted

against cross validation because of the computational burden involved. Specifically, given

hn, one would estimate B, fit a forward model with the projected data, apply cross valida-

tion and select hn that obtains the lowest cross-validated error in the forward model.
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4 Optimization Algorithm

A Stiefel manifold optimization algorithm is used to obtain the solution of the sample ver-

sion of the optimization problem (9). To calculate V̂q in (7) a curvilinear search is used

[24, 19], an approach similar to gradient descend. First an arbitrary starting value V(0) is

selected by drawing a p× q matrix from the invariant measure on S(p, q); i.e., the uniform

distribution on S(p, q). The Q-component of the QR decomposition of a p× q matrix with

independent standard normal entries follows the invariant measure [4]. A step-size τ > 0

and tolerance tol > 0 are fixed at the outset.

Result: V(end)

Initialize: V(0), τ = 1, tol = 10−3, error = tol + 1, maxit = 50, count = 0;

while error > tol and count ≤ maxit do

• G = ∇VLn(V(j)) ∈ Rp×q, W = GV′ −VG′ ∈ Rp×p

• V(j+1) = (Ip + τW)−1(Ip − τW)V(j)

• error = ‖V(j)V(j′) −V(j+1)V(j+1)′‖2/(pq)

if Ln(V(j+1))− Ln(V(j)) > 0 then

V(j+1) ← V(j); τ ← τ
2
; error← tol + 1

else
count← count + 1

end

end

Algorithm 1: Curvilinear search

[24] showed that the sequence generated by the algorithm converges to a stationary

point if Armijo-Wolfe conditions are used for determining the stepsize τ . We opted for
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simpler conditions to determine the step size since they are computationally less expensive

and exhibit same behavior as the Armijo-Wolfe conditions in the simulations.

The algorithm is repeated for m arbitrary V(0) starting values drawn from the invariant

measure on S(p, q). Among those, the value at which Ln in (14) is minimal is selected as

V̂q.

5 Theory

In this section we show that the sample based objective function is weakly consistent for

its true value. All proofs are given in the Appendix.

The summands of L̃n in (13) can be expressed as

ȳl(V, s0) =
t
(l)
n (V, s0)

t
(0)
n (V, s0)

, (21)

where

t(l)n (V, s0) =
1

nh
(p−q)/2
n

n∑
i=1

K(di(V, s0)/hn)Y l
i (22)

for l = 0, 1, 2.

Theorem 7. Under assumptions A.1, A.3, and nhp−qn →∞,

Var
(
t(l)n (V, s0)

)
→ 0

for t
(l)
n given in (22), l = 0, 1, 2.
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Theorem 8. Under assumptions A.1, A.2, A.4, and hn → 0,

E

(
1

nh
(p−q)/2
n

n∑
i=1

K

(
di(V, s0)

hn

)
g(B′Xi)

l

)
→ t(l)(V, s0)

∫
Rp−q

K(‖r‖2
2)dr, (23)

E

(
1

nh
(p−q)/2
n

n∑
i=1

K

(
di(V, s0)

hn

)
εi

)
= 0, (24)

and

E

(
1

nh
(p−q)/2
n

n∑
i=1

K

(
di(V, s0)

hn

)
ε2i

)
→ η2t(0)(V, s0)

∫
Rp−q

K(‖r‖2
2)dr (25)

where t(l) is defined in Theorem 1 for l = 0, 1, 2.

Theorem 9. Under assumptions A.1, A.2, A.3, A.4, hn → 0, nhp−qn →∞ and
∫
Rp−q K(‖r‖2

2)dr =

1,

(a) t
(l)
n (V, s0)

L2(Ω)−→ t(l)(V, s0), for l = 0, 1

(b) t
(2)
n (V, s0)

L2(Ω)−→ t(2)(V, s0) + η2t(0)(V, s0)

for t
(l)
n given in (22) and t(l) defined in Theorem 1, for l = 0, 1, 2.

Theorem 9 follows directly from Theorems 7, 8 and the bias variance decomposition,

E(t(l)n (V, s0)− t(l)(V, s0))2 =
(
E(t(l)n (V, s0))− t(l)(V, s0)

)2
+ Var

(
t(l)n (V, s0)

)
.

Theorem 10. Under A.1, A.2, A.3, A.4, hn → 0 and nhp−qn →∞,

(a) ȳ1(V, s0)
P−→ µ1(V, s0)
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(b) ȳ2(V, s0)
P−→ µ2(V, s0) + η2

(c) L̃n(V, s0)
P−→ L̃(V, s0)

where ȳl(·, ·) is given in (21) and µl(·, ·) in Theorem 1 for l = 1, 2.

Theorems 7-10 lead to Theorem 11 that establishes the consistency of the sample CVE

objective function.

Theorem 11. Under A.1, A.2, A.3, A.4, A.5, hn → 0 and nhp−qn →∞, then L̃n(V, s0)
L2(Ω)−→

L̃(V, s0), and

Ln(V) −→ L(V) in probability

as n→∞ for all V ∈ S(p, q).

5.1 A small study of Ln(V) behavior

We explore how accurately the sample version (14) of the objective function estimates

the target subspace using an example. We consider a bivariate normal predictor vector,

X = (X1, X2)′ ∼ N(0,Σx). We generate the response from Y = g(B′X) + ε = X1 + ε with

ε ∼ N(0, η2), independent of X. Therefore, k = 1, B = (1, 0)′, g(z) = z ∈ R in (1).

Applying Theorem 1 obtains

µl(V, s0) =

∫
R2

g(B′x)lfX|X∈s0+span{V}(x)dx =

∫
R2

(B′x)lfX|X∈s0+span{V}(x)dx (26)

In the Appendix we show that, under this setting, (5) is given by

fX|X∈s0+span{V}(x) =


1
σ
ψ( r1−α

σ
) if x ∈ s0 + span{V}, r1 = V′(x− s0) ∈ R

0 otherwise
(27)
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where ψ(z) is the density of a standard normal variable. Inserting (27) in (26), we obtain

∫
R
(B′s0 + B′Vr1)l

1

σ
ψ(
r1 − α
σ

)dr1 =

B′s0 + B′Vα l = 1

(B′s0)2 + 2(B′s0)(B′V)α + (B′V)2(σ2 + α2) l = 2

for V ∈ R2×1, σ2 = (V′Σ−1
x V)−1 and α is computed in the Appendix. Applying Theorem 1,

using the definitions (4) and (6), yields L̃(V, s0) = µ2(V, s0)−µ1(V, s0)2+η2 = (B′V)2σ2+

η2, so that

L(V) = E
(
L̃(V,X)

)
= (B′V)2σ2 + η2 =

(B′V)2

V′Σ−1
x V

+ η2 (28)

From (28) we clearly see that L(V) attains its minimum when V ⊥ B. Also, if Σx = I2, the

maximum of L(V) is attained at V = B. To visualize the behavior of L̃n(V) as the sample

size increases, we parametrize V by V(θ) = (cos(θ), sin(θ))′, θ ∈ [0, π]. Since B = (1, 0)′,

the minimum of L̃(V) is at V(π/2) = (0, 1)′ ⊥ B.

The true L(V(θ)) and its estimates Ln(V(θ)) are plotted for samples of different size n

in Fig 1. Ln(V(θ)) approximates L(V) fast and attains its minimum at the same value as

L(V) even for the smallest sample of 10 observations.

Assumptions A.4 and A.5 are violated in this example, which suggests that the proposed

estimator of CVE applies under weaker assumptions.

6 Simulation studies

We compare the estimation accuracy of CVE with the forward model based SDR methods,

mean MAVE (meanMAVE) [23], central subspace MAVE (csMAVE) [20] and pHd [16, 10], and

the inverse regression based methods, SIR [15] and SAVE [9]. Central subspace MAVE

(csMAVE) assumes Y = g(B′X, ε), which is a much more general model than (1). csMAVE
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Figure 1: Solid black: L(V(θ)) = cos(θ)2 + 0.12, colored Ln(V(θ)), θ ∈ [0, π], n =
10, 50, 100, 500. Vertical black line at θ = π/2

is included in the comparison as it is one of only three existing forward model based SDR

methods. The dimension k is assumed to be known throughout.

We implement CVE using 30 arbitrary starting values in the optimization algorithm.

We use three different bandwidths, hn(n0.8) > hn(n0.66) > hn(n0.5) in (20), which are

indicated with CVE1, CVE2 and CVE3, respectively. Except for CVE, these methods are

implemented using the R packages dr and MAVE.

The five models we consider are given in Table 1. Throughout, we set p = 12, b1 =

(1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)′/
√

6, b2 = (1,−1, 1,−1, 1,−1, 0, 0, 0, 0, 0, 0)′/
√

6, except for M2

where b1 = e1 and b2 = e2, where ej denotes the j unit vector in R12, and ε is standard

normal independent of X.

The variance-covariance structure of X in models M1 and M3 satisfies Σi,j = 0.5|i−j| for

i, j = 1, . . . , p. M1 is studied in both [23] and [15], but we use p = 12 instead of 10 and a non

identity covariance structure. In M4, Z ∼ Bernoulli(pmix), where 1q = (1, 1, ..., 1)′ ∈ Rq,

mixing probability pmix ∈ [0, 1] and dispersion parameter λ > 0. For 0 < pmix < 1, X has
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Table 1: Models
Name Model X distribution k n

M1 Y =
b′

1X
0.5+(b′

2X+1.5)2 + 0.5ε X ∼ Np(0,Σ) 2 200

M2 Y = (b′1X)(b′2X)2 + 0.5ε X ∼ Np(0, Ip) 2 200
M3 Y = cos(b′1X) + 0.5ε X ∼ Np(0,Σ) 1 100
M4 Y = cos(b′1X) + 0.5ε X ∼ (Z(−112) + (1− Z)112)λ+Np(0, Ip) 1 100
M5 Y = 2 log(|b′1X|+ 1) + 0.5ε X ∼ Np(0, Ip) 1 42

a mixture normal distribution, where pmix is the relative mode height and λ is a measure

of mode distance.

We set q = p − k and generate r = 100 replications of models M1-M5. We estimate

B using the six SDR methods. The accuracy of the estimates is assessed using err =

‖PB − PB̂‖2/
√

2k ∈ [0, 1], where PB = B(BB′)−1B′ is the orthogonal projection matrix

on span{B}. The factor
√

2k normalizes the distance, with values closer to zero indicating

better agreement and values closer to one indicating strong disagreement.

In Figures 2 - 4 we plot the box-plots of the r = 100 estimation errors for each method.

For models M1-M3, CVE is approximately on par with MAVE, its main competitor, as

can be seen in Figs 2 - 3. SIR and SAVE are not competitive throughout our experiments.

SIR, in particular, is expected to fail in models M3-M5 since E(Y |X) is even.

CVE shows its advantage in Figure 3, where box-plots of the errors in models M3 and M5

are plotted, and Figure 4 with the box-plots for model M4. Model M5 depicts the setting

where the sample size is small (42) relative to the predictor dimension (12). The value of

the sample size was selected so that MAVE applies without “pre-screeening,” which carries

out some form of model selection that is unspecified in the MAVE package documentation.

In Fig. 4, box-plots for all combinations of pmix ∈ {0.3, 0.4, 0.5} and λ ∈ {0, 0.5, 1, 1.5}

are presented. CVE performs better than all competing methods and is the only method

with consistently smaller errors when the two modes are further apart (λ ≥ 1) regardless
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of the mixing probability pmix. The performance of both meanMAVE and csMAVE worsens

as one moves from left to right row-wise. The mixing probability, pmix, has no noticeable

effect on the performance of any method; i.e., the plots are very similar column-wise. In

sum, MAVE’s performance deteriorates as the bimodality of the predictor distribution

becomes more distinct. In contrast, CVE is unaffected. Since models M3 and M4 are

otherwise identical, CVE appears to have an advantage over MAVE when the predictors

have mixture distributions. CVE is the only method that estimates the mean subspace

reliably in model M4 (err ≈ 0.3 to 0.4), whereas MAVE misses it completely (err ≈ 1).

These results indicate that CVE is either approximately on par, or can perform better than

MAVE depending on the predictor distribution.

Figure 2: Left panel: M1, p = 12, n = 200; Right panel: M2, p = 12, n = 200

7 Hitters data set

The Hitters data were analyzed by [23]. The response is Y = log(salary) and the covariate

vector is the 16-dimensional X = (x1, ..., x16)′. Its components are times at bat x1, hits x2,

home runs x3, runs x4, runs batted in x5 and walks x6 in 1986, years in major leagues x7,
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Figure 3: Left panel: M3, p = 12, n = 100; Right panel: M5 p = 12, n = 42

Figure 4: M4, p = 12, n = 100
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times at bat x8, hits x9, home runs x10, runs x11, runs batted in x12 and walks x13 during

their entire career up to 1986, put-outs x14, assistances x15 and errors x16. Following [23],

we standardize X by subtracting the mean and rescaling column-wise so that each predictor

has unit variance. The same is done for Y . Furthermore, the 7 outliers are removed as in

[23].

We estimate the dimension k via cross-validation, following the approach in [23], with

k̂ = argminl=0,...,pCV (l), (29)

where CV (l) =
∑

i(Yi − ĝ−i(B̂′lXi))
2/n, ĝ−i(·) =

∑n
j=1,j 6=i w̃j(·)Yj is the local linear

smoother [12, 21], CV (0) =
∑

i(Yi − Ȳ )2/n with Ȳ =
∑

i Yi/n, and B̂l = V̂⊥p−l is any

basis of the orthogonal complement of V̂p−l, with

V̂p−l = argminV∈S(p,p−l) Ln(V).

For a given l, we calculate B̂l from the whole data set and predict Yi by Ŷi,l = ĝ−i(B̂′lXi) =∑n
j=1,j 6=i w̃j(B̂

′
lXi/h̃n,l)Yj, using the bandwidth h̃n,l = n−1/(3+2l). For l = p, B̂p = Ip. We

set SqDevi,l = (Yi − Ŷi,l)2.

For CVE, we use four different choices of nObs for the bandwidth. CVE1-3 are as in

Section 6 and CVE4 uses hn(n0.4). Table 2 reports the average and median SqDevi,l over

l = 1, . . . , 5; i.e.,
∑

i SqDevi,l/n in the first and the median in the second line for each l.

With respect to mean squared deviations, MAVE, which is meanMAVE in this applica-

tion, appears to outperform CVE. It estimates the dimension to be 2, as do CVE1-3, but

CVE4 estimates it to be 5. If the median square deviation is used instead to estimate the

dimension, all CVE methods would estimate it to be 2, in agreement with MAVE. Inspec-

tion of the summary statistics in Table 3 reveals that CVE is distorted by few extremely
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Table 2: Mean and Median SqDev

l CVE1 CVE2 CVE3 CVE4 MAVE

1 0.274 0.411 0.383 0.341 0.428
0.080 0.056 0.064 0.071 0.090

2 0.244 0.308 0.247 0.268 0.127
0.076 0.058 0.046 0.040 0.051

3 0.284 0.460 0.268 0.271 0.184
0.082 0.075 0.058 0.057 0.091

4 0.470 0.350 0.440 0.313 0.260
0.117 0.093 0.074 0.066 0.154

5 0.588 0.370 0.397 0.261 0.190
0.148 0.115 0.098 0.078 0.083

Table 3: Summary statistics for l=2

l = 2 CVE1 CVE2 CVE3 CVE4 MAVE

min 0.000 0.000 0.000 0.000 0.000
Q1 0.016 0.0147 0.006 0.008 0.014
Median 0.076 0.058 0.046 0.040 0.051
Mean 0.244 0.308 0.247 0.268 0.127
Q3 0.257 0.187 0.177 0.188 0.188
max 13.971 33.544 15.014 9.901 0.998

high squared deviations.

Since CVE4 has the lowest median and maximum, it is used for further analysis. Fol-

lowing [23], we plot the response against the estimated directions in Fig. 5. CVE and

MAVE pick up the same pattern: the response appears to be linear in one direction and

quadratic in the second.

For CVE4, the fitted regression is

Ŷ = 0.360915 + 0.269121(b′1X) + 0.345169(b′2X)− 0.071651(b′2X)2 (30)

with R2 = 0.7729, and for MAVE

Ŷ = 0.39051 + 0.49546(b′1X) + 1.32529(b′2X)− 0.55328(b′2X)2 (31)

with R2 = 0.7859. Both models (30) and (31) have about the same fit as measured by R2.
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Figure 5: Y against b′1X and b′2X

8 Discussion

In this paper the novel conditional variance estimator (CVE) for the mean subspace is in-

troduced. We present its geometrical and theoretical foundation and propose an estimation

algorithm with assured convergence. CVE requires weak assumptions on the covariates,

such as continuous density with compact support. The latter is sufficient but not necessary

to show the sample objective function is consistent.

The theoretical challenge that CVE presents arises from the novelty of its definition that

involves random weights that depend on the parameter to be estimated. This precludes

the usage of standard probabilistic arguments for establishing consistency of the subspace

estimates and may require new probability tools.

CVE does not involve the estimation of the link function g in (1), which may explain
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why CVE has an advantage over mean MAVE, its direct competitor, in some regression

settings. Moreover, CVE does not require the inversion of the predictor covariance matrix

and can be applied to regressions with p ≈ n or p > n.

CVE is a nonparametric estimation technique and the bandwidth choice is important.

Our results were obtained by a heuristic rule based on a reparametrization. With this

choice of bandwidth, CVE is shown to exhibit similar or better estimation performance

than MAVE in our simulations.

Improvement of CVE performance via bias reduction techniques, a complete study

of its asymptotic properties, optimal bandwidth selection and extension to central space

estimation are under investigation.
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9 Appendix

Proof of Theorem 1: The conditional probability of X|X ∈ s0 + span{V} is defined to be

P(X ≤ x|X ∈ s0 + span{V}) = lim
h↓0

P({X ≤ x} ∩ {X ∈ s0 + spanh{V}})
P(X ∈ s0 + spanh{V})

(32)

where spanh{V} is defined below (16). Let U be an orthonormal basis of the orthogonal

complement of span{V}; that is, U′V = 0,U′U = Ip−q. Let x = s0 + Vr1 + Ur2 where

r1 = V′(x− s0) ∈ Rq, r2 = U′(x− s0) ∈ Rp−q. Then,

P(X ∈ s0 + spanh{V}) =

∫
s0+spanh{V}

fX(x)dx =

∫
spanh{V}

fX(s0 + x)dx

=

∫
Rq

∫
‖r2‖22≤h

fX(s0 + Vr1 + Ur2)dr2dr1

= Vol(‖r2‖2
2 ≤ h)

∫
Rq

fX(s0 + Vr1 + Uξh)dr1

where the last equality follows from the mean value theorem with ξh ∈ B
p−q
h (0), Bp−q

h (0)

is the p− q dimensional ball at the origin with radius h.

The numerator of (32) equals∫
{z≤x}∩{z∈s0+spanh{V}}

fX(z)dz =

∫ y1

−∞
...

∫ yq

−∞

∫
‖r2‖22≤h

fX(s0 + Vr1 + Ur2)dr2dr1

= Vol(‖r2‖2
2 ≤ h)

∫ y1

−∞
...

∫ yq

−∞
fX(s0 + Vr1 + Uξ̃h)dr1
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where (y1, ..., yq)
′ = V′(x − s0) and ξ̃h ∈ Bp−q

h (0). Observe that if x /∈ s0 + span{V},

(y1, ..., yq)
′ = 0 and therefore the cdf is constant and the density is 0. Substituting the

numerator and denominator into (32) yields

lim
h↓0

∫ y1
−∞ ...

∫ yq
−∞ fX(s0 + Vr1 + Uξ̃h)dr1∫

Rq fX(s0 + Vr1 + Uξh)dr1

(33)

By the dominated convergence theorem, the limit can be passed under the integral, sep-

arately for the numerator and denominator since one can choose M > 0 such that the

integral is negligible outside of BM(0). On the compact set the continuity of the density

obtains an integrable majorant. Since both the numerator and denominator converge, (33)

converges to ∫ y1
−∞ ...

∫ yq
−∞ fX(s0 + Vr1)dr1∫

Rq fX(s0 + Vr1)dr1

Taking the derivative results in (5).

Due to the independence of X and ε in (1), Var(Y |X ∈ s0+span{V}) = Var(g(B′X)|X ∈

s0 + span{V}) + Var(ε). Using the density formula in (5) we obtain (7).

The parameter integral [13],

t(l)(V, s0) =

∫
Rq

g(B′s0 + B′Vr)lfX(s0 + Vr)dr =

∫
Rq

g̃(V, s0, r)dr

is well defined and continuous if (1) g̃(V, s0, ·) is integrable for all V, s0, (2) g̃(·, ·, r) is

continuous for all r, and (3) there exists an integrable dominating function of g̃ that does

not depend on V and s0 [see [13] p. 101]. Furthermore t(l)(V, s0) =
∫
K
g̃(V, s0, r)dr for

some compact set K since supp(fX) is compact. The function g̃(V, s0, r) is continuous in all

inputs by the continuity of g and fX, and therefore it attains a maximum. In consequence,

all three conditions are satisfied so that t(l)(V, s0) is well defined and continuous.
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Next µl(V, s0) = t(l)(V, s0)/t(0)(V, s0) is continuous since t(0)(V, s0) > 0 for all s0 ∈

supp(fX) by the continuity of fX and Σx > 0. Then, L̃(V, s0) in (7) is continuous. Since

L(V) is a parameter integral, it is well defined and continuous following the same argu-

ments as above.

Proof of Theorem 7: Since (X′i, Yi) are iid draws from the joint distribution of (X′, Y ),

Var
(
t(l)n (V, s0)

)
=

1

nhp−qn

Var

(
K

(
d1(V, s0)

hn

)
Y l

1

)
≤ 1

nhp−qn

E

(
K

(
d1(V, s0)

hn

)2

Y 2l
1

)
≤ E(Y 2l

1 )M2
2

nhp−qn

→ 0

where the last inequality derives from the boundedness of the kernel, K(·) ≤M2.

Proof of Theorem 8: Let U be an orthonormal basis of the orthogonal complement of

span{V} and x = s0 + Vr1 + Ur2, where r1 = V′(x − s0) ∈ Rq, r2 = U′(x − s0) ∈ Rp−q,

and QVx = (Ip −PV)x = Ur2.

E

(
1

nh
(p−q)/2
n

n∑
i=1

K

(
di(V, s0)

hn

)
g(B′Xi)

l

)
=

1

h
(p−q)/2
n

E
(
K

(
di(V, s0)

hn

)
g(B′X1)l

)
=

1

h
(p−q)/2
n

∫
Rp

K

(
‖QV(x− s0)‖2

2

hn

)
g(B′x)lfX(x)dx

=
1

h
(p−q)/2
n

∫
Rp

K

(
‖QVx‖2

2

hn

)
g(B′s0 + B′x)lfX(s0 + x)dx

=
1

h
(p−q)/2
n

∫
Rq

∫
Rp−q

K

(
‖ r2√

hn
‖2

2

)
g(B′s0 + B′Vr1 + B′Ur2)lfX(s0 + Vr1 + Ur2)dr2dr1
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Applying Fubini’s Theorem and substituting r̃2 = r2/
√
hn, dr2 = h

(p−q)/2
n dr̃2 yields∫

Rq

∫
Rp−q

K(‖r2‖2
2)g(B′s0 + B′Vr1 +

√
hnB

′Ur2)lfX(s0 + Vr1 +
√
hnUr2)dr2dr1

By Assumption A.3, Y is integrable. Thus, there exists an M > 0 such that the integral

outside of Bp
M(0) is negligible. Using similar arguments as in the proof of Theorem 1, the

limit can be pulled inside the integral and also inside the functions because of the continuity

of g(·) and fX(·), obtaining (23). Eqns. (24) and (25) follow directly from (23) with l = 0

from the independence of Xi and εi.

Proof of Theorem 10: Since L2(Ω) convergence implies convergence in probability, (a)

and (b) follow from (21), Theorem 9 and the continuous mapping theorem. (c) follows

from (a) and (b), Theorem 1 and L̃n(V, s0) = ȳ2(V, s0)− ȳ1(V, s0)2.

Proof of Theorem 11: By (14) and (6),

|Ln(V)− L(V)| ≤ 1

n

∑
i

|L̃n(V,Xi)− L̃(V,Xi)|+
1

n

∑
i

|L̃(V,Xi)− E(L̃(V,X))| (34)

The second term on the right hand side goes to 0 almost surely by the strong law of large

numbers. For the first term observe that

t(l)n (V,Xi)|(Xi = s0) =
1

nh
(p−q)/2
n

K

(
di(V, s0)

hn

)
Y l
i +

1

nh
(p−q)/2
n

∑
j 6=i

K

(
dj(V, s0)

hn

)
Y l
j

L2(Ω)−→ t(l)(V, s0)

by similar arguments as in the proof of Theorems 7 and 8, since the first term of the right
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hand side converges to 0 by nh
(p−q)/2
n → ∞. Therefore, Zn(V, s0) := L̃n(V,Xi)|(Xi =

s0) −→ L̃(V, s0) in probability by the continuous mapping theorem.

Under Assumption A.5, L̃n(V, s0) ≤ 4M2
1 , Zn(V, s0) ≤ 4M2

1 and Ln(V, s0) ≤ 4M2
1 , so

that Zn(V, s0) is uniformly integrable. Therefore, Zn(V, s0)
L2(Ω)−→ L̃(V, s0), which implies

convergence in L1(Ω). Let Z̃n(s0) = E|Zn(V, s0)−L̃(V, s0)|. By Assumption A.5, Z̃n(s0) ≤

32M2
1 . Next,

lim
n→∞

E

(
1

n

∑
i

|L̃n(V,Xi)− L̃(V,Xi)|

)
= lim

n→∞
E
(
|L̃n(V,Xi)− L̃(V,Xi)|

)
= lim

n→∞
E
(
E|L̃n(V,Xi)− L̃(V,Xi)||Xi = s0

)
= lim

n→∞
E
(
Z̃n(X)

)
(35)

Z̃n(s0) → 0 for all s0, so that Z̃n(X) → 0 almost surely. By dominated convergence, the

limit can be swapped with the expectation in (35) which yields that the limit is 0. There-

fore, the first term goes to 0 in L1(Ω) and the second almost surely in the right hand side

of (34).

Proof of Lemma 5: From (12) and (13) we have L̃n = ȳ2−ȳ2
1 where ȳl =

∑
iwiY

l
i for l = 1, 2.

We suppress the dependence on V and s0 and write wi = Ki/
∑

jKj. For the Gaussian ker-

nel, ∇Ki = (−1/h2
n)Kidi∇di and ∇wi =

(
Kidi∇di(

∑
jKj)−Ki

∑
jKjdj∇dj

)
/(
∑

jKj)
2.

Then

∇ȳl = − 1

h2
n

∑
i

Y l
i

(
Kidi∇di −Ki(

∑
jKjdj∇dj)

)
(
∑

jKj)2
= − 1

h2
n

∑
i

Y l
i wi

(
di∇di −

∑
j

wjdj∇dj

)

= − 1

h2
n

∑
i

Y l
i widi∇di −

∑
j

Y l
jwj

∑
i

widi∇di = − 1

h2
n

∑
i

(Y l
i − ȳl)widi∇di
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Then, ∇L̃n = (−1/h2
n)(∇ȳ2 − 2ȳ1∇ȳ1) = (−1/h2

n)
∑

i(Y
2
i − ȳ2 − 2ȳ1(Yi − ȳ1))widi∇di =

(1/h2
n)(
∑

i

(
L̃n − (Yi − ȳ1)2

)
widi∇di), since Y 2

i − ȳ2 − 2ȳ1(Yi − ȳ1) = (Yi − ȳ1)2 − L̃n.

Derivation of (27): By Theorem 1, the density, dropping the normalization constant,

is

fX|X∈s0+span{V}(x) ∝ fX(s0 + Vr1) ∝ exp

(
−1

2
(s0 + r1V)′Σ−1

x (s0 + r1V)

)
∝ exp

(
−1

2

(
2r1V

′Σ−1
x s0 + r2

1V
′Σ−1

x V
))

= exp

(
− 1

2σ2

(
2r1σ

2V′Σ−1
x s0 + r2

1

))
∝ exp

(
− 1

2σ2
(r1 − α)2

)
, (36)

where the square is completed in (36) with σ2 = 1/(V′Σ−1
x V) and α = −σ2V′Σ−1s0. Let

ψ(z) be the density of a standard normal variable. Then,

fX|X∈s0+span{V}(x) =


1
σ
ψ( r1−α

σ
) if x ∈ s0 + span{V}, r1 = V′(x− s0) ∈ R

0 otherwise
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