\documentclass[12pt,a4paper]{article} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{amsmath, amsfonts, amssymb, amsthm} \usepackage{tikz} \usepackage{fullpage} \newcommand{\vecl}{\ensuremath{\operatorname{vec}_l}} \newcommand{\Sym}{\ensuremath{\operatorname{Sym}}} \begin{document} Indexing a given matrix $A = (a_{ij})_{i,j = 1, ..., n} \in \mathbb{R}^{n\times n}$ given as \begin{displaymath} A = \begin{pmatrix} a_{0,0} & a_{0,1} & a_{0,2} & \ldots & a_{0,n-1} \\ a_{1,0} & a_{1,1} & a_{1,2} & \ldots & a_{1,n-1} \\ a_{2,0} & a_{2,1} & a_{2,2} & \ldots & a_{2,n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n-1,0} & a_{n-1,1} & a_{n-1,2} & \ldots & a_{n-1,n-1} \end{pmatrix} \end{displaymath} A symmetric matrix with zero main diagonal, meaning a matrix $S = S^T$ with $S_{i,i} = 0,\ \forall i = 1,..,n$ is givne in the following form \begin{displaymath} S = \begin{pmatrix} 0 & s_{1,0} & s_{2,0} & \ldots & s_{n-1,0} \\ s_{1,0} & 0 & s_{2,1} & \ldots & s_{n-1,1} \\ s_{2,0} & s_{2,1} & 0 & \ldots & s_{n-1,2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ s_{n-1,0} & s_{n-1,1} & s_{n-1,2} & \ldots & 0 \end{pmatrix} \end{displaymath} Therefore its sufficient to store only the lower triangular part, for memory efficiency and some further alrogithmic shortcuts (sometime they are more expencife) the symmetric matrix $S$ is stored in packed form, meanin in a vector of the length $\frac{n(n-1)}{2}$. We use (like for matrices) a column-major order of elements and define the $\vecl:\Sym(n)\to \mathbb{R}^{n(n-1) / 2}$ opperator defined as \begin{displaymath} \vecl(S) = (s_{1,0}, s_{2,0},\cdots,s_{n-1,0},s_{2,1}\cdots,s_{n-1,n-2})^T \end{displaymath} The relation between the matrix indices $i,j$ and the $\vecl$ index $k$ is given by \begin{displaymath} (\vecl(S)_k = s_{i,j} \quad\Leftrightarrow\quad k = jn+i) : j \in \{0,...,n-2\} \land j < i < n. \end{displaymath} \begin{center} \begin{tikzpicture}[xscale=1,yscale=-1] % \foreach \i in {0,...,5} { % \node at ({mod(\i, 3)}, {int(\i / 3)}) {$\i$}; % } \foreach \i in {1,...,4} { \foreach \j in {1,...,\i} { \node at (\j, \i) {$\i,\j$}; } } \end{tikzpicture} \end{center} \end{document}