#' Simple implementation of the CVE method. 'Simple' means that this method is #' a classic GD method unsing no further tricks. #' #' @keywords internal #' @export cve_sgd <- function(X, Y, k, nObs = sqrt(nrow(X)), h = NULL, tau = 0.01, epochs = 50L, batch.size = 16L, attempts = 10L ) { # Get dimensions. n <- nrow(X) # Number of samples. p <- ncol(X) # Data dimensions q <- p - k # Complement dimension of the SDR space. # Save initial learning rate `tau`. tau.init <- tau # Estaimate bandwidth if not given. if (missing(h) | !is.numeric(h)) { h <- estimate.bandwidth(X, k, nObs) } # Init a list of data indices (shuffled for batching). indices <- seq(n) I_p <- diag(1, p) # Init tracking of current best (according multiple attempts). V.best <- NULL loss.best <- Inf # Start loop for multiple attempts. for (attempt in 1:attempts) { # Reset learning rate `tau`. tau <- tau.init # Sample a starting basis from the Stiefl manifold. V <- rStiefl(p, q) # Repeat `epochs` times for (epoch in 1:epochs) { # Shuffle batches batch.shuffle <- sample(indices) # Make a step for each batch. for (start in seq(1, n, batch.size)) { # Select batch data indices. batch <- batch.shuffle[start:(start + batch.size - 1)] # Remove `NA`'s (when `n` isn't a multiple of `batch.size`). batch <- batch[!is.na(batch)] # Compute batch gradient. loss <- NULL G <- grad(X[batch, ], Y[batch], V, h) # Cayley transform matrix. A <- (G %*% t(V)) - (V %*% t(G)) # Apply learning rate `tau`. A.tau <- tau * A # Parallet transport (on Stiefl manifold) into direction of `G`. V <- solve(I_p + A.tau) %*% ((I_p - A.tau) %*% V) } } # Compute actuall loss after finishing optimization. loss <- grad(X, Y, V, h, loss.only = TRUE) # After each attempt, check if last attempt reached a better result. if (!is.null(V.best)) { # Only required if there is already a result. if (loss < loss.best) { loss.best <- loss V.best <- V } } else { loss.best <- loss V.best <- V } } return(list( X = X, Y = Y, k = k, nObs = nObs, h = h, tau = tau, epochs = epochs, batch = batch, attempts = attempts, loss = loss.best, V = V.best, B = null(V.best) )) }