#' Simple implementation of the CVE method. 'Simple' means that this method is #' a classic GD method unsing no further tricks. #' #' @keywords internal #' @export cve_sgd <- function(X, Y, k, nObs = sqrt(nrow(X)), h = NULL, tau = 0.01, tol = 1e-3, epochs = 50L, batch.size = 16L, attempts = 10L, logger = NULL ) { # Set `grad` functions environment to enable if to find this environments # local variabels, needed to enable the manipulation of this local variables # from within `grad`. environment(grad) <- environment() # Get dimensions. n <- nrow(X) # Number of samples. p <- ncol(X) # Data dimensions q <- p - k # Complement dimension of the SDR space. # Save initial learning rate `tau`. tau.init <- tau # Addapt tolearance for break condition. tol <- sqrt(2 * q) * tol # Estaimate bandwidth if not given. if (missing(h) || !is.numeric(h)) { h <- estimate.bandwidth(X, k, nObs) } # Compute persistent data. # Compute lookup indexes for symmetrie, lower/upper # triangular parts and vectorization. pair.index <- elem.pairs(seq(n)) i <- pair.index[1, ] # `i` indices of `(i, j)` pairs j <- pair.index[2, ] # `j` indices of `(i, j)` pairs # Index of vectorized matrix, for lower and upper triangular part. lower <- ((i - 1) * n) + j upper <- ((j - 1) * n) + i # Create all pairewise differences of rows of `X`. X_diff <- X[i, , drop = F] - X[j, , drop = F] # Identity matrix. I_p <- diag(1, p) # Init a list of data indices (shuffled for batching). indices <- seq(n) # Init tracking of current best (according multiple attempts). V.best <- NULL loss.best <- Inf # Start loop for multiple attempts. for (attempt in 1:attempts) { # Reset learning rate `tau`. tau <- tau.init # Sample a `(p, q)` dimensional matrix from the stiefel manifold as # optimization start value. V <- rStiefl(p, q) # Keep track of last `V` for computing error after an epoch. V.last <- V if (is.function(logger)) { loss <- grad(X, Y, V, h, loss.only = TRUE, persistent = TRUE) error <- NA epoch <- 0 logger(environment()) } # Repeat `epochs` times for (epoch in 1:epochs) { # Shuffle batches batch.shuffle <- sample(indices) # Make a step for each batch. for (batch.start in seq(1, n, batch.size)) { # Select batch data indices. batch.end <- min(batch.start + batch.size - 1, length(batch.shuffle)) batch <- batch.shuffle[batch.start:batch.end] # Compute batch gradient. loss <- NULL G <- grad(X[batch, ], Y[batch], V, h, loss.out = TRUE) # Cayley transform matrix. A <- (G %*% t(V)) - (V %*% t(G)) # Apply learning rate `tau`. A.tau <- tau * A # Parallet transport (on Stiefl manifold) into direction of `G`. V <- solve(I_p + A.tau) %*% ((I_p - A.tau) %*% V) } # And the error for the history. error <- norm(V.last %*% t(V.last) - V %*% t(V), type = "F") V.last <- V if (is.function(logger)) { # Compute loss at end of epoch for logging. loss <- grad(X, Y, V, h, loss.only = TRUE, persistent = TRUE) logger(environment()) } # Check break condition. if (error < tol) { break() } } # Compute actual loss after finishing for comparing multiple attempts. loss <- grad(X, Y, V, h, loss.only = TRUE, persistent = TRUE) # After each attempt, check if last attempt reached a better result. if (loss < loss.best) { loss.best <- loss V.best <- V } } return(list( loss = loss.best, V = V.best, B = null(V.best), h = h )) }