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ABSTRACT

Ensemble Conditional Variance Estimation (ECVE) is a novel sufficient dimension reduction (SDR)
method in regressions with continuous response and predictors. ECVE applies to general non-additive
error regression models. It operates under the assumption that the predictors can be replaced by a lower
dimensional projection without loss of information.It is a semiparametric forward regression model
based exhaustive sufficient dimension reduction estimation method that is shown to be consistent under
mild assumptions. It is shown to outperform central subspace mean average variance estimation
(csMAVE), its main competitor, under several simulation settings and in a benchmark data set analysis.

1 Introduction

Let (Ω,F ,P) be a probability space. Let Y be a univariate continuous response and X a p-variate continuous predictor,
jointly distributed, with (Y,XT )T : Ω → Rp+1. We consider the linear sufficient dimension reduction model

Y = gcs(B
TX, ǫ), (1)

where X ∈ Rp is independent of the random variable ǫ, B is a p × k matrix of rank k, and gcs : Rk+1 → R is an
unknown non-constant function.

[ZZ10, Thm. 1] showed that if (Y,XT )T has a joint continuous distribution, (1) is equivalent to

Y ⊥⊥ X | BTX, (2)

where the symbol ⊥⊥ indicates stochastic independence. The matrix B is not unique. It can be replaced by any basis of
its column space, span{B}. Let S denote a subspace of Rp, and let PS denote the orthogonal projection onto S with
respect to the usual inner product. If the response Y and predictor vector X are independent conditionally on PSX,
then PSX can replace X as the predictor in the regression of Y on X without loss of information. Such subspaces
S are called dimension reduction subspaces and their intersection, provided it satisfies the conditional independence
condition (2), is called the central subspace and denoted by SY |X [see [Coo98, p. 105], [Coo07]].

By their equivalence, under both models (1) and (2), FY |X(y) = FY |BTX(y) and SY |X = span{B}. Since the

conditional distribution of Y | X is the same as that of Y | BTX, BTX contains all the information in X for modeling
the target variable Y , and it can replace X without any loss of information.
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If the error term in model (1) is additive with E(ǫ | X) = 0, (1) reduces to Y = g(BTX)+ ǫ. Now, E(Y | X) = E(Y |
BTX) = E(Y | PSX), where S = span{B}. The mean subspace, denoted by SE(Y |X), is the intersection of all

subspaces S such that E(Y | X) = E(Y | PSX) [CL02]. In this case, (1) becomes the classic mean subspace model
with span{B} = SE(Y |X). [CL02] showed that the mean subspace is a subset of the central subspace, SE(Y |X) ⊆ SY |X.

Several linear sufficient dimension reduction (SDR) methods estimate SE(Y |X) consistently ([AC09, MZ13, Li18,
XTLZ02]). Linear refers to the reduction being a linear transformation of the predictor vector. Minimum Average
Variance Estimation (MAVE) [XTLZ02] is the most competitive and accurate method among them. MAVE differentiates
from the majority of SDR methods, in that it is not inverse regression based such as, for example, the widely used
Sliced Inverse Regression (SIR, [Li91]). MAVE requires minimal assumptions on the distribution of (Y,XT )T and is
based on estimating the gradients of the regression function E(Y | X) via local-linear smoothing [CD88].

The central subspace mean average variance estimation (csMAVE) [WX08, WY19] is the extension of MAVE that con-
sistently and exhaustively estimates the span{B} in model (1) without restrictive assumptions limiting its applicability.
csMAVE has remained the gold standard since it was proposed by [WX08]. It is based on repeatedly applying MAVE on
the sliced target variables fu(Y ) = 1{su−1<Y≤su} for s1 < . . . < sH . [WX08] showed that the mean subspaces of the
sliced Y can be combined to recover the central subspace SY |X.

Several papers made contributions in establishing a road path from the central mean to the central subspace [see [YL11]
for a list of references]. [YL11] recognized that these approaches pointed to the same direction: if one can estimate the
central mean subspace of E(f(X) | Y ) for sufficiently many functions f ∈ F for a family of functions F , then one can
recover the central subspace. Such families that are rich enough to obtain the desired outcome are called characterizing
ensembles by [YL11], who also proposed and studied such functional families [see also [Li18] for an overview].

In this paper, we extend the conditional variance estimator (CVE) [FB21] to the exhaustive ensemble conditional variance
estimator for recovering fully the central subspace SY |X. Conditional variance estimation is a semi-parametric method

for the estimation of SE(Y |X) consistently under minimal regularity assumptions on the distribution of (Y,XT )T . In
contrast to other SDR approaches, it operates by identifying the orthogonal complement of SE(Y |X). In this paper we
apply the conditional variance estimator (CVE) to identify the mean subspace SE(ft(Y )|X) of transformed responses

ft(Y ), where ft are elements of an ensemble F = {ft : t ∈ ΩT }, and then combine them to form the central subspace
SY |X.

The paper is organized as follows. In Section 2 we define the notation and concepts we use throughout the paper. A short
overview of ensembles is given in Section 2.1. The ensemble conditional variance estimator (ECVE) is introduced in
Section 3 and the estimation procedure in Section 4. In Section 5, the consistency of the ensemble conditional variance
estimator for the central subspace is shown. We assess and compare the performance of the estimator vis-a-vis csMAVE
via simulations in Section 6 and by applying it to the Boston Housing data in Section 7. We conclude in Section 8.

2 Preliminaries

We denote by FZ the cumulative distribution function (cdf) of a random variable or vector Z. We drop the subscript,
when the attribution is clear from the context. For a matrix A, ‖A‖ denotes its Frobenius norm, and ‖a‖ the Euclidean
norm for a vector a. Scalar product refers to the usual Euclidean scalar product, and ⊥ denotes orthogonality with
respect to it. The probability density function of X is denoted by fX, and its support by supp(fX). The notation
Y ⊥⊥ X signifies stochastic independence of the random vector X and random variable Y . The j-th standard basis
vector with zeroes everywhere except for 1 on the j-th position is denoted by ej ∈ Rp, ιp = (1, 1, . . . , 1)T ∈ Rp, and
Ip = (e1, . . . , ep) is the identity matrix of order p. For any matrix M ∈ Rp×q , PM denotes the orthogonal projection

matrix on its column or range space span{M}; i.e., PM = Pspan{M} = M(MTM)−1MT ∈ Rp×p.

For q ≤ p,

S(p, q) = {V ∈ Rp×q : VTV = Iq}, (3)

denotes the Stiefel manifold that comprizes of all p× q matrices with orthonormal columns. S(p, q) is compact with
dim(S(p, q)) = pq − q(q + 1)/2 [see [Boo02] and Section 2.1 of [Tag11]]. The set

Gr(p, q) = S(p, q)/S(q, q) (4)

denotes a Grassmann manifold [GH94] that contains all q-dimensional subspaces in Rp. Gr(p, q) is the quotient space
of S(p, q) with all q × q orthonormal matrices in S(q, q).
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2.1 Ensembles

[YL11] introduced ensembles as a device to extend mean subspace to central subspace SDR methods. The ensemble
approach of combining mean subspaces to span the central subspace comprizes of two components: (a) a rich family
of functions of transformations for the response and (b) a sampling mechanism for drawing the functions from the
ensemble to ascertain coverage of the central subspace. To distinguish between families of functions and ensembles,
[YL11] use the term parametric ensemble, which we define next.

Definition. A family F of measurable functions from R to R is called an ensemble. If F is a family of measurable
functions with respect to an index set ΩT ; i.e. F = {ft : t ∈ ΩT }, F is called a parametric ensemble.

Let F be an ensemble, f ∈ F and let f(Y ), for Y following model (1). The space SE(f(Y )|X) is defined to be the mean

subspace of the transformed random variable f(Y ) [see [Coo98] or [CL02]].

Definition. An ensemble F characterizes the central subspace SY |X, if

span{SE(ft(Y )|X) : ft ∈ F} = SY |X (5)

As an example, the parametric ensemble F = {ft : t ∈ ΩT } = {1{z≤t} : t ∈ R} can characterize the central

subspace SY |X. That is, E(ft(Y )|X) is the conditional cumulative distribution function evaluated at t. To see this, let

B ∈ S(p, k) be such that E(ft(Y ) | X) = E(ft(Y ) | BTX) for all t. Then, FY |X(t) = E(ft(Y ) | X) = E(ft(Y ) |
BTX) = FY |BTX(t) for all t. Varying over the parametric ensemble F , in this case over t ∈ R, obtains the conditional

cumulative distribution function. This indicator ensemble fully recovers the conditional distribution of Y | X and,
thus, also the central subspace SY |X,

span{SE(ft(Y )|X) : ft ∈ F} = span{S
E(1{Y ≤t}|X) : t ∈ R} = SY |X

We reproduce a list of parametric ensembles F , and associated regularity conditions, that can characterize SY |X from
[YL11] next.

Characteristic ensemble F = {ft : t ∈ ΩT } = {exp(it·) : t ∈ R}
Indicator ensemble F = {1{z≤t} : t ∈ R}, where span{SE(ft(Y )|X) : ft ∈ F} recovers the conditional cumulative

distribution function

Kernel ensemble F = {h−1K ((z − t)/h) : t ∈ R, h > 0}, where K is a kernel suitable for density estimation, and
span{SE(ft(Y )|X) : ft ∈ F} recovers the conditional density

Polynomial ensemble F = {zt : t = 1, 2, 3, ...}, where span{SE(ft(Y )|X) : ft ∈ F} recovers the conditional
moment generating function

Box-Cox ensemble F = {(zt − 1)/t : t 6= 0} ∪ {log(z) : t = 0} Box-Cox Transforms

Wavelet ensemble Haar Wavelets

The characteristic and indicator ensembles describe the conditional characteristic and distribution function of
Y | X, respectively, which always exist and determine the distribution uniquely. If the conditional density function fY |X

of Y | X exists, then the kernel ensemble characterizes the conditional distribution Y | X. Further, if the conditional
moment generating function exists, then the polynomial ensemble characterizes SY |X. [YL11] used the ensemble
device to extend MAVE [XTLZ02], which targets the mean subspace, to its ensemble version that also estimates the
central subspace SY |X consistently.

Theorem 1 [YL11, Thm 2.1] establishes when an ensemble F is rich enough to characterize SY |X.

Theorem 1. Let B = {1A : A is a Borel set in supp(Y )} be the set of indicator functions on supp(Y ) and L2(FY ) be
the set of square integrable random variables with respect to the distribution FY of the response Y . If F ⊆ L2(FY ) is
dense in B ⊆ L2(FY ), then the ensemble F characterizes the central subspace SY |X.

In Theorem 2 we show that finitely many functions of an ensemble F are sufficient to characterize the central subspace
SY |X.

Theorem 2. If a parametric ensemble F characterizes SY |X, then there exist finitely many functions ft ∈ F , with
t = 1, . . . ,m and m ∈ N, such that

span{SE(ft(Y )|X) : t ∈ 1, . . . ,m} = SY |X

3
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Proof: Let k = dim(SY |X) ≤ p. Since F characterizes SY |X, dim(SE(ft(Y )|X)) = kt ≤ k by (5) for any t. If kt = 0,

SE(ft(Y )|X) = {0} so the corresponding ft does not contribute to (5). Assume kt ≥ 1. If there were infinitely many

SE(ft(Y )|X) 6= {0} of dimension at least 1, whose span is SY |X, then infinitely as many are identical, otherwise the

dimension of the central subspace SY |X would be infinite, contradicting that dim(SY |X) = k < ∞.

The importance of Theorem 2 lies in the fact that the search to characterize the central subspace is over a finite set, even
though it does not offer tools for identifying the elements of the ensemble.

3 Ensemble CVE

Throughout the paper, we refer to the following assumptions as needed.

(E.1). Model (1), Y = gcs(B
TX, ǫ) holds with Y ∈ R, gcs : Rk × R → R non constant in the first argument,

B = (b1, ...,bk) ∈ S(p, k), X ∈ Rp is independent of ǫ, the distribution of X is absolutely continuous with respect to
the Lebesgue measure in Rp, supp(fX) is convex, and Var(X) = Σx is positive definite.

(E.2). The density fX : Rp → [0,∞) of X is twice continuously differentiable with compact support supp(fX).

(E.3). For a parametric ensemble F , its index set ΩT is endowed with a probability measure FT such that for all
t ∈ ΩT with SE(ft(Y )|X) 6= {0},

PFT

(
{t̃ ∈ ΩT : SE(ft̃(Y )|X) = SE(ft(Y )|X)}

)
> 0

(E.4). For an ensemble F we assume that for all f ∈ F , the conditional expectation

E (f(Y ) | X)

is twice continuously differentiable in the conditioning argument. Further, for all f ∈ F
E(|f(Y )|8) < ∞

Assumption (E.1) assures the existence and uniqueness of SY |X = span{B}. Furthermore, it allows the mean subspace
to be a proper subset of the central subspace, i.e. SE(Y |X) ( SY |X. In Assumption (E.2), the compactness assumption

for supp(fX) is not as restrictive as it might seem. [YLC08, Prop. 11] showed that there is a compact set K ⊂ Rp such
that SY |X|K

= SY |X, where X|K = X1{X∈K}. Assumption (E.3) simply states that the set of indices that characterize

the central subspace SY |X is not a null set. In practice, the choice of the probability measure FT on the index set ΩT

of a parametric ensemble F can always guarantee the fulfillment of this assumption. If the characteristic or indicator
ensemble are used, (E.4) states that the conditional characteristic or distribution function are twice continuously
differentiable. In this case, the 8th moments exist since the complex exponential and indicator functions are bounded.

Definition. For q ≤ p ∈ N, f ∈ F , and any V ∈ S(p, q), we define

L̃F (V, s0, f) = Var (f(Y ) | X ∈ s0 + span{V}) (6)

where s0 ∈ Rp is a non-random shifting point.

Definition. Let F be a parametric ensemble and FT a cumulative distribution function (cdf) on the index set ΩT . For
q ≤ p, and any V ∈ S(p, q), we define

LF (V) =

∫

ΩT

∫

Rp

L̃(V,x, ft)dFX(x)dFT (t) (7)

= Et∼FT

(
EX

(
L̃F (V,X, ft)

))
= Et∼FT

(L∗
F (V, ft)),

where FX is the cdf of X,and

L∗
F (V, ft) = EX

(
L̃F (V,X, ft)

)
. (8)

For the identity function, ft0(z) = z, (8) is the target function of the conditional variance estimation proposed in
[FB21]. If the random variable t is concentrated on t0; i.e., t ∼ δt0 , then the ensemble conditional variance estimator
(ECVE) coincides with the conditional variance estimator (CVE).

The following theorem will be used in establishing the main result of this paper, which obtains the exhaustive sufficient
reduction of the conditional distribution of Y given the predictor vector X.

4
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Theorem 3. Assume (E.1) and (E.2) hold, in particular model (1) holds. Let B̃ be a basis of SE(ft(Y )|X); i.e.

span{B̃} = SE(ft(Y )|X) ⊆ SY |X = span{B}. Then, for any f ∈ F for which assumption (E.4) holds,

f(Y ) = g(B̃TX) + ǫ̃, (9)

with E(ǫ̃ | X) = 0 and g : Rkt → R is a twice continuously differentiable function, where kt = dim(SE(ft(Y )|X)).

By Theorem 3, any response Y can be written as an additive error via the decomposition (9). The predictors and the
additive error term are only required to be conditionally uncorrelated in model (9). The conditional variance estimator

[FB21] also estimated B̃ in (9) but under the more restrictive condition of predictor and error independence.

Proof of Theorem 3.

f(Y ) = E (f(Y ) | X) + f(Y )− E (f(Y ) | X)︸ ︷︷ ︸
ǫ̃

= E (f(Y ) | X) + ǫ̃

= E
(
f(Y )|B̃TX

)
+ ǫ̃ = g(B̃TX) + ǫ̃

where g(B̃TX) = E
(
f(Y )|B̃TX

)
. By the tower property of the conditional expectation, E(ǫ̃ | X) = E(f(Y ) |

X)− E(E(f(Y ) | X) | X) = E(f(Y ) | X)− E(f(Y ) | X) = 0. The function g is twice continuous differentiable by
(E.4).

Theorem 4. Assume (E.1) and (E.2) hold. Let F be a parametric ensemble, s0 ∈ supp(fX) ⊂ Rp, V ∈ S(p, q) defined
in (3). Then, for any f ∈ F for which assumption (E.4) holds,

L̃F (V, s0, f) = µ2(V, s0, f)− µ2
1(V, s0, f) + Var(ǫ̃ | X ∈ s0 + span{V}) (10)

where

µl(V, s0, f) =

∫

Rq

g(B̃T s0 + B̃TVr1)
l fX(s0 +Vr1)∫

Rq fX(s0 +Vr)dr
dr1 =

t(l)(V, s0, f)

t(0)(V, s0, f)
, (11)

for g given in (9) with

t(l)(V, s0, f) =

∫

Rq

g(B̃T s0 + B̃TVr1)
lfX(s0 +Vr1)dr1, (12)

and

Var(ǫ̃ | X ∈ s0 + span{V}) = E(ǫ̃2 | X ∈ s0 + span{V})

=

∫

supp(fX)∩Rq

h(s0 +Vr1)fX(s0 +Vr1)dr1/

∫

Rq

fX(s0 +Vr)dr =
h̃(V, s0, f)

t(0)(V, s0, f)
(13)

with E(ǫ̃2 | X = x) = h(x) and h̃(V, s0, f) =
∫

supp(fX)∩Rq h(s0 +Vr1)fX(s0 +Vr1)dr1. Further assume h(·) to

be continuous, then L∗
F (V, ft) in (8) is well defined and continuous,

Vt
q = argminV∈S(p,q) L

∗
F (V, ft) (14)

is well defined, and the conditional variance estimator of the transformed response ft(Y ) identifies SE(ft(Y )|X),

SE(ft(Y )|X) = span{Vt
q}⊥. (15)

[FB21] assumed model Y = g(BTX) + ǫ with ǫ ⊥⊥ X, which implies SE(Y |X) = span{B} = SY |X. [FB21] showed
that the conditional variance estimator (CVE) can identify SE(Y |X) at the population level.

Theorem 4 extends this result to obtain that the conditional variance estimator (CVE) identifies the mean subspace
SE(Y |X) also in models of the form Y = g(BTX)+ ǫ̃, where ǫ̃ is simply conditionally uncorrelated with X. This allows
CVE to apply to problems where the mean subspace is a proper subset of the central subspace, i.e. SE(Y |X) ( SY |X.

Vt
q in (14) is not unique since for all orthogonal O ∈ Rq×q, L∗

F (V
t
qO, ft) = L∗

F (V
t
q, ft) as L∗

F (V
t
q, ft) depends on

Vt
q only through span{Vt

q} by (6). Nevertheless, it is a unique minimizer over the Grassmann manifold Gr(p, q) in

5
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(4). To see this, suppose V ∈ S(p, q) is an arbitrary basis of a subspace M ∈ Gr(p, q). We can identify M through the
projection PM = VVT . By (31), we write x = Vr1 +Ur2. Application of the Fubini-Tonelli Theorem yields

t̃(l)(PM, s0, f) =

∫

supp(fX)

g(BT s0 +BTPMx)lfX(s0 +PMx)dx (16)

= t(l)(V, s0, f)

∫

supp(fX)∩Rp−q

dr2.

Therefore t̃(l)(PM, s0, f)/t̃
(0)(PM, s0, f) = t(l)(V, s0, f)/t

(0)(V, s0, f) and µl(·, s0, f) in (11) can also be viewed
as a function from Gr(p, q) to R.

Next we define the ensemble conditional variance estimator (ECVE) for a parametric ensemble F which characterizes
the central subspace SY |X. Following the ensemble minimum average variance estimation formulation in [YL11], we
extend the original objective function by integrating over the index random variable t ∼ FT in (7) that indexes the
ensemble F as [YL11].

Definition 5. Let

Vq = argminV∈S(p,q) LF (V) (17)

The Ensemble Conditional Variance Estimator with respect to the ensemble F is defined to be any basis Bp−q,F of

span{Vq}⊥.

Theorem 6. Assume (E.1), (E.2), (E.3), and (E.4) hold, and that the function h(·) defined in Theorem 4 is continuous.
Let F be a parametric ensemble that characterizes SY |X, with k = dim(SY |X), and V be an element of the Stiefel

manifold S(p, q), which is defined in (3), with q = p− k. Then, Vq in (17) is well defined and

SY |X = span{Vq}⊥. (18)

4 Estimation of the ensemble CVE

Assume (Yi,X
⊤
i )

⊤
i=1,...,n is an i.i.d. sample from model (1), and let

di(V, s0) = ‖Xi −Ps0+span{V}Xi‖22 = ‖Xi − s0‖22 − 〈Xi − s0,VV⊤(Xi − s0)〉
= ‖(Ip −VV⊤)(Xi − s0)‖22 = ‖QV(Xi − s0)‖22 (19)

where 〈·, ·〉 is the usual inner product in Rp, PV = VV⊤ and QV = Ip −PV. The estimators we propose involve
a variation of kernel smoothing, which depends on a bandwidth hn. In our procedure, hn is the squared width of a
slice around the subspace s0 + span{V}. In order to obtain pointwise convergence for the ensemble CVE, we use the
following bias and variance assumptions on the bandwidth, as typical in nonparametric estimation.

(H.1). For n → ∞, hn → 0

(H.2). For n → ∞, nh
(p−q)/2
n → ∞

In order to obtain consistency of the proposed estimator, Assumption (H.2) will be strengthened to log(n)/nh
(p−q)/2
n →

0.

We also let K, which we refer to as kernel, be a function satisfying the following assumptions.

(K.1). K : [0,∞) → [0,∞) is a non increasing and continuous function, so that |K(z)| ≤ M1, with
∫
Rq K(‖r‖2)dr <

∞ for q ≤ p− 1.

(K.2). There exist positive finite constants L1 and L2 such that K satisfies either (1) or (2) below:

(1) K(u) = 0 for |u| > L2 and for all u, ũ it holds |K(u)−K(ũ)| ≤ L1|u− ũ|
(2) K(u) is differentiable with |∂uK(u)| ≤ L1 and for some ν > 1 it holds |∂uK(u)| ≤ L1|u|−ν for |u| > L2

The Gaussian kernel K(z) = exp(−z2), for example, fulfills both (K.1) and (K.2) [see [Han08]], and will be used
throughout the paper.

For i = 1, . . . , n, we let

wi(V, s0) =
K
(

di(V,s0)
hn

)

∑n
j=1 K

(
dj(V,s0)

hn

) (20)

6
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ȳl(V, s0, f) =
n∑

i=1

wi(V, s0)f(Yi)
l for l = 1, 2 (21)

We estimate L̃F (V, s0, f) in (10) with

L̃n,F (V, s0, f) = ȳ2(V, s0, f)− ȳ1(V, s0, f)
2, (22)

and the objective function L∗
F (V, f) in (8) with

L∗
n(V, f) =

1

n

n∑

i=1

L̃n,F (V,Xi, f), (23)

where each data point Xi is a shifting point. For a parametric ensemble F = {ft : t ∈ ΩT } and (tj)j=1,...,mn an i.i.d.
sample from FT with limn→∞ mn = ∞, the final estimate of the objective function in (7) is given by

Ln,F (V) =
1

mn

mn∑

j=1

L∗
n(V, ftj ) (24)

The ensemble conditional variance estimator (ECVE) is defined to be any basis of span{V̂q}⊥, where

V̂q = argminV∈S(p,q) Ln,F (V) (25)

We use the same algorithm as in [FB21] to solve the optimization problem (25). It requires the explicit form of the
gradient of (24). Theorem 7 provides the gradient when a Gaussian kernel is used.

Theorem 7. The gradient of L̃n,F (V, s0, f) in (22) is given by

∇VL̃n,F (V, s0, f) =
1

h2
n

n∑

i=1

(L̃n,F (V, s0, f)− (f(Yi)− ȳ1(V, s0, f))
2)widi∇Vdi(V, s0) ∈ Rp×q,

and the gradient of Ln,F (V) in (24) is

∇VLn,F (V) =
1

nmn

n∑

i=1

mn∑

j=1

∇VL̃n,F (V,Xi, ftj ).

In the implementation of ECVE, we follow [FB21] and set the bandwidth to

hn = 1.22
2tr(Σ̂x)

p

(
n−1/(4+p−q)

)2
. (26)

where Σ̂x = (1/n)
∑

i(Xi − X̄)(Xi − X̄)T and X̄ = (1/n)
∑

i Xi.

4.1 Weighted estimation of L∗
n(V, f)

The set of points {x ∈ Rp : ‖x−Ps0+span{V}x‖2 ≤ hn} represents a slice in the subspace of Rp about s0+span{V}.

In the estimation of L(V) two different weighting schemes are used: (a) Within slices: The weights are defined in (20)
and are used to calculate (22). (b) Between slices: Equal weights 1/n are used to calculate (23). Another idea for the
between slices weighting is to assign more weight to slices with more points. This can be realized by altering (23) to

L(w)
n (V, f) =

n∑

i=1

w̃(V,Xi)L̃n(V,Xi, f), with (27)

w̃(V,Xi) =

∑n
j=1 K(dj(V,Xi)/hn)− 1

∑n
l,u=1 K(dl(V,Xu)/hn)− n

=

∑n
j=1,j 6=i K(dj(V,Xi)/hn)∑n

l,u=1,l 6=u K(dl(V,Xu)/hn)
(28)

The denominator in (28) guarantees the weights w̃(V,Xi) sum up to one. If (27) instead of (23) is used in (24) we
refer to this method as weighted ensemble conditional variance estimation.

For example, if a rectangular kernel is used,
∑n

j=1,j 6=i K(dj(V,Xi)/hn) is the number of Xj (j 6= i) points in the

slice corresponding to L̃n(V,Xi, f). Therefore, this slice is assigned weight that is proportional to the number of Xj

points in it, and the more observations we use for estimating L(V,Xi, f), the better its accuracy.

7
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5 Consistency of the ECVE

The consistency of ECVE derives from the consistency of CVE [FB21] that targets a specific SE(ft(Y )|X) and the fact

that we can recover SY |X from SE(ft(Y )|X) across all transformations ft ∈ F = {ft : t ∈ ΩT } for an ensemble that
characterizes SY |X. This is achieved in sequential steps from Theorem 8, which is the main building block, to Theorem
11. The proofs are technical and lengthy, and, thus, are given in the Appendix.

Theorem 8. Assume conditions (E.1), (E.2), (E.4), (K.1), (K.2), (H.1) hold, a2n = log(n)/nh
(p−q)/2
n = o(1), and

an/h
(p−q)/2
n = O(1). Let F be a parametric ensemble such that E(|ǫ̃|l | X = x) is continuous for l = 1, . . . , 4, and

the second conditional moment is twice continuously differentiable, where ǫ̃ is given by Theorem 3. Then, L∗
n(V, f),

defined in (23), converges uniformly in probability to L∗(V, f) in (8) for all f ∈ F; i.e.,

sup
V∈S(p,q)

|L∗
n(V, f)− L∗(V, f)| −→ 0 in probability as n → ∞.

Next, Theorem 9 shows that ensemble conditional variance estimator is consistent for SE(ft(Y )|X) for any transformation
f .

Theorem 9. Under the same conditions as Theorem 8, the conditional variance estimator span{B̂t
kt
} estimates

SE(ft(Y )|X) consistently, for ft ∈ F . That is,

‖P
B̂t

kt

−PSE(ft(Y )|X)
‖ → 0 in probability as n → ∞.

where B̂t
kt

is any basis of span{V̂t
kt
}⊥ with

V̂t
kt

= argminV∈S(p,q) L
∗
n,F (V, ft).

with q = p− kt and kt = dim(SE(ft(Y )|X)).

A straightforward application of Theorem 9, using the identity function, obtains that SE(Y |X) can be consistently
estimated by ECVE.

Theorem 10. Assume the conditions of Theorem 8 hold. Let F be a parametric ensemble such that supt∈ΩT
|ft(Y )| <

M < ∞ almost surely, and let the index random variable t ∼ FT be independent from the data (Yi,Xi)i=1,...,n. Then
Ln,F (V), defined in (24), converges uniformly in probability to LF (V) in (7); i.e.,

sup
V∈S(p,q)

|Ln,F (V)− LF (V)| −→ 0 in probability as n → ∞.

The assumption supt∈ΩT
|ft(Y )| < M < ∞ in Theorem 10 is trivially satisfied by the elements of the characteristic

and indicator ensembles. Further the assumption an/h
(p−q)/2
n = O(1) used for the truncation step in the proof of

Theorem 8 can be dropped since obviously no truncation is needed.

The rate of convergence of mn is not characterized in Theorem 10. In the simulation studies of Sections 6.2 and 6, we
find that mn should be chosen to be very small relative to the sample size n, roughly at the rate of log(n).

The consistency of the ensemble CVE is shown in Theorem 11.

Theorem 11. Assume the conditions of Theorem 8 and (E.3) hold. Let F be a parametric ensemble that characterizes
SY |X and whose members satisfy supt∈ΩT

|ft(Y )| < M < ∞ almost surely. Also, assume the index random variable

t ∼ FT is independent from the data (Yi,Xi)i=1,...,n. Then, the ensemble conditional variance estimator (ECVE)

is a consistent estimator for SY |X. That is, for any basis B̂p−q,F of span{V̂q}⊥, where V̂q is defined in (25) with

q = p− k and k = dim(SY |X),

‖P
B̂p−q,F

−PSY |X
‖ −→ 0 in probability as n → ∞,

where PM denotes the orthogonal projection onto the range space of the matrix or linear subspace M.

6 Simulation Studies

6.1 Influence of mn on ECVE

In this section we study the influence of the number of functions of the ensemble F , mn in (24), on the accuracy of
the ensemble conditional variance estimation. In Theorem 10 and 11, how fast mn approaches ∞ is unspecified. We
consider the 2-dimensional regression model

Y = (bT
2 X) + (0.5 + (bT

1 X)2)ǫ, (29)

8
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where p = 10, k = 2, X ∼ N(0, I10), ǫ ∼ N(0, 1) independent of X, b1 = (1, 0, . . . , 0)T ∈ Rp, and b2 =
(0, 1, 0, . . . , 0)T ∈ Rp. Therefore, SE(Y |X) = span{b2} ( SY |X = span{B}, with B = (b1,b2).

We set the sample size to n = 300 and vary m over {4, 8, 10, 26, 50, 76, 100} for the (a) indicator, Fm,Indicator =
{1{x≥qj} : j = 1, . . . ,m}, where qj is the j/(m+ 1)th empirical quantile of (Yi)i=1,...,n; (b) characteristic or Fourier,

Fm,Fourier = {sin(jx) : j = 1, . . . ,m/2} ∪ {cos(jx) : j = 1, . . . ,m/2}; (c) monomial, Fm,Monom = {xj : j =
1, . . . ,m}, (d) and Box-Cox, Fm,BoxCox = {(xtj −1)/tj : tj = 0.1+2(j−1)/(m−1), j = 1, . . . ,m−1}∪{log(x)},
ensembles.

For each ensemble, we form the ensemble conditional variance estimator and its weighted version as in section 4.1,
see also [FB21]. The results of 100 replications for each method and each m are displayed in Figure 1. We assess

the estimation accuracy with errj,m = ‖B̂B̂T − BBT ‖/(2k)1/2, j = 1, . . . , 100, m ∈ {2, 4, 8, 10, 26, 50, 76, 100}.
ECVE’s main competitor, csMAVE, which does not vary with m, estimate of the central subspace has median error 0.2
with a wide range from 0.1 to 0.6. The estimation accuracy of Fourier, Indicator and Box-Cox ECVE vary over m and is
on par or better for some m values.

For the Fourier basis, fewer basis functions give the best performance, the indicator and BoxCox ensembles are quite ro-
bust against varying m, whereas the errors get rapidly larger if m is increased for the monomial ensemble. The weighted
version of ECVE improves the accuracy for all ensembles. F4,Fourier_weighted, F8,Indicator_weighted, F4,BoxCox_weighted are
on par or more accurate than csMAVE. In sum, the simulation results support a choice of a small m number of basis
functions. Based on this and further unreported simulations, we set the default value of m to

mn =

{
⌈log(n)⌉, if ⌈log(n)⌉ even

⌈log(n)⌉+ 1, if ⌈log(n)⌉ odd
(30)

for all simulations in Section 6.2, 6.3 and the data analysis in Section 7.

6.2 Demonstrating consistency

We explore the consistency rate of the conditional variance estimator (CVE) and ensemble conditional variance
estimator (CVE), csMAVE and mMAVE in model (29).

Specifically, we apply seven estimation methods, the first five targeting the central subspace SY |X and the last two
SE(Y |X), as follows. For SY |X, we compare ECVE for the indicator (I), Fourier (II), monomial (III) and Box-Cox (IV)
ensembles, as in Section 6.1, and csMAVE (V). For SE(Y |X), we use CVE (VI) of [FB21] and mMAVE (VII) in [XTLZ02].

The simulation is performed as follows. We generate 100 i.i.d samples (Yi,X
T
i )i=1,...,n from (29) for each sample

size n = 100, 200, 400, 600, 800, 1000. Model (29) is a two dimensional model with SE(Y |X) = span(b2) (

SY |X = span(B). For methods (I)-(V), we set k = 2 and estimate B ∈ R10×2. For (VI) and (VII), we set

k = 1 and estimate b2 ∈ R10×1. Then, we calculate errj,n = ‖B̂B̂T − BBT ‖/(2k)1/2, j = 1, . . . , 100, n ∈
{100, 200, 400, 600, 800, 1000}. Figure 2 displays the distribution of errj,n for increasing n for the seven methods. As
the sample size increases ECVE Indicator, Fourier and csMAVE are on par with respect to both speed and accuracy.
The accuracy of ECVE Box-Cox improves as the sample size increases but at a slower rate. There is no improvement
in the accuracy of ECVE monomial. This is not surprising as the monomial, as well as the Box-Cox, do not satisfy
the assumption supt∈ΩT

|ft(Y )| < M < ∞ in Theorem 11, in contrast to the Indicator and Fourier ensembles. The
Fourier, Indicator ECVE and csMAVE estimate SY |X = span{B} consistently and the mean subspace methods, CVE

and mMAVE, estimate SE(Y |X) = span{b2} consistently.

6.3 Evaluating estimation accuracy

We consider seven models, (M1-M7) defined in Table 1, three different sample sizes {100, 200, 400}, and three

different distributions of the predictor vector X = Σ1/2Z ∈ Rp, where Σ = (Σij)i,j=1,...,p, Σi,j = 0.5|i−j|.
Throughout, p = 10, B are the first k columns of Ip, and ǫ ∼ N(0, 1) independent of X. As in [WX08], we

consider three distributions for Z ∈ Rp: (I) N(0, Ip), (II) p-dimensional uniform distribution on [−
√
3,
√
3]p, i.e. all

components of Z are independent and uniformly distributed , and (III) a mixture-distribution N(0, Ip) + µ, where

µ = (µ1, . . . , µp)
T ∈ Rp with µj = 2, µk = 0, for k 6= j, and j is uniformly distributed on {1, . . . , p}.

The simple and weighted [see Section 4.1] Fourier and Indicator ensembles are used to form four ensemble
conditional variance estimators (ECVE). The monomial and BoxCox ensembles were also used but did not give
satisfactory results and are not reported. From these two ensembles four ECVE estimators are formed and compared

9
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Figure 1: Box plots of the estimation errors over 100 repli-
cations of model (29) with n = 300 over m = |F| =
(2, 4, 8, 10, 26, 50, 76, 100) across four ensembles.

Figure 2: Estimation error distribution of model (29) plotted
over n = (100, 200, 400, 600, 800, 1000) for the seven (I-
VII) methods

against the reference method csMAVE [WX08], which is implemented in the R package MAVE. The source code for
conditional variance estimation and its ensemble version is available at https://git.art-ist.cc/daniel/CVE.

Table 1: Models

Name Model SE(Y |X) SY |X k

M1 Y = 1
bT
1 X

+ 0.2ǫ span{b1} span{b1} 1

M2 Y = cos(2bT

1 X) + cos(bT

2 X) + 0.2ǫ span{b1,b2} span{b1,b2} 2

M3 Y = (bT

2 X) + (0.5 + (bT

1 X)2)ǫ span{b2} span{b1,b2} 2

M4 Y =
b
T
1 X

0.5+(1.5+bT
2 X)2

+ (|bT

1 X|+ (bT

2 X)2 + 0.5)ǫ span{b1,b2} span{b1,b2} 2

M5 Y = b
T

3 X+ sin(bT

1 X(bT

2 X)2)ǫ span{b3} span{b1,b2,b3} 3

M6 Y = 0.5(bT

1 X)2ǫ span{0} span{b1} 1

M7 Y = cos(bT

1 X− π) + cos(2bT

1 X)ǫ span{b1} span{b1} 1

We set q = p− k and generate r = 100 replicates of models M1-M7 with the specified distribution of X and sample
size n. We estimate B using the four ECVE methods and csMAVE. The accuracy of the estimates is assessed using

err = ‖PB − P
B̂
‖2/

√
2k ∈ [0, 1], where PB = B(BTB)−1BT is the orthogonal projection matrix on span{B}.

The factor
√
2k normalizes the distance, with values closer to zero indicating better agreement and values closer to

one indicating strong disagreement. The results are displayed in Tables 2-8. In M1, which is taken from [WX08],
the mean subspace agrees with the central subspace, i.e. SE(Y |X) = SY |X, but due to the unboundedness of the link

function g(x) = 1/x most mean subspace estimation methods, such as SIR, mean MAVE and CVE, fail. In contrast,
all 4 ensemble CVE methods and csMAVE succeed in identifying the minimal dimension reduction subspace, with
ensemble CVE performing slightly better, as can be seen in Table 2. In particular, Fourier is the best performing
method. M2, is a two dimensional mean subspace model, i.e. SE(Y |X) = SY |X, and in Table 3 we see that csMAVE is
the best performing method. M3 is the same as model (29) and here the mean subspace is a proper subset of the central
subspace. In Table 4 we see that Indicator_weighted and csMAVE are the best performers and are roughly on par. In
M4, the two dimensional mean subspace, which determines also the heteroskedasticity, agrees with the central subspace.
In Table 5 we see that this model is quite challenging for all methods, and only Indicator_weighted and csMAVE
give satisfactory results, with Indicator_weighted the clear winner.

In M5, the heteroskedasticity is induced by an interaction term, and the three dimensional central subspace model is
a proper superset of the one dimensional mean subspace. In Table 6 we see that M5 is quite challenging for all five
methods, therefore we increase the sample size n to 800. For M5, the two weighted ensemble conditional variance
estimators are the best performing methods followed by csMAVE.

10
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M6 is a one dimensional pure central subspace model, whereas the mean subspace is 0. In Table 7, we see that for
n = 100 the two weighted ECVEs are the best performing methods and for higher sample sizes csMAVE is slightly
more accurate than the ECVE methods.

In M7 the one dimensional mean subspace agrees with the central subspace, i.e. SE(Y |X) = SY |X, and the conditional

first and second moments, E(Y l | X) for l = 1, 2, are highly nonlinear and periodic functions of the sufficient reduction.
In Table 8, we see that all ensemble conditional variance estimators clearly outperform csMAVE.

Table 2: Mean and standard deviation (in parenthesis) of estimation errors of M1

Distribution n Fourier Fourier_weighted Indicator Indicator_weighted csMAVE

I 100 0.172 0.201 0.248 0.265 0.210
(0.047) (0.054) (0.064) (0.063) (0.063)

I 200 0.120 0.142 0.182 0.197 0.128
(0.029) (0.037) (0.045) (0.049) (0.037)

I 400 0.079 0.091 0.126 0.136 0.080
(0.020) (0.024) (0.037) (0.040) (0.024)

II 100 0.174 0.196 0.241 0.254 0.193
(0.038) (0.049) (0.055) (0.056) (0.059)

II 200 0.110 0.127 0.170 0.182 0.121
(0.031) (0.033) (0.043) (0.045) (0.036)

II 400 0.078 0.091 0.122 0.132 0.079
(0.021) (0.026) (0.031) (0.033) (0.020)

III 100 0.187 0.218 0.256 0.263 0.204
(0.045) (0.053) (0.060) (0.058) (0.066)

III 200 0.118 0.137 0.171 0.179 0.118

(0.031) (0.038) (0.043) (0.042) (0.033)

III 400 0.082 0.101 0.127 0.132 0.079

(0.020) (0.029) (0.031) (0.032) (0.022)

Table 3: Mean and standard deviation (in parenthesis) of estimation errors of M2

Distribution n Fourier Fourier_weighted Indicator Indicator_weighted csMAVE

I 100 0.670 0.601 0.629 0.582 0.575

(0.089) (0.135) (0.130) (0.140) (0.176)

I 200 0.478 0.388 0.436 0.407 0.219

(0.201) (0.152) (0.193) (0.162) (0.136)

I 400 0.226 0.201 0.231 0.236 0.098

(0.153) (0.074) (0.127) (0.111) (0.025)

II 100 0.663 0.652 0.687 0.658 0.544

(0.097) (0.104) (0.057) (0.080) (0.176)

II 200 0.525 0.468 0.601 0.539 0.182

(0.171) (0.171) (0.127) (0.148) (0.096)

II 400 0.267 0.307 0.375 0.357 0.087

(0.081) (0.146) (0.154) (0.141) (0.021)

III 100 0.657 0.590 0.530 0.542 0.603
(0.104) (0.148) (0.155) (0.148) (0.193)

III 200 0.421 0.367 0.306 0.336 0.240

(0.203) (0.165) (0.147) (0.151) (0.193)

III 400 0.170 0.170 0.144 0.170 0.089

(0.110) (0.071) (0.053) (0.063) (0.019)

7 Boston Housing Data

We apply the ensemble conditional variance estimator and csMAVE to the Boston Housing data set. This data set has
been extensively used as a benchmark for assessing regression methods [see, for example, [JWHT13]], and is available
in the R-package mlbench. The data contains 506 instances of 14 variables from the 1970 Boston census, 13 of which
are continuous. The binary variable chas, indexing proximity to the Charles river, is omitted from the analysis since
ensemble conditional variance estimation operates under the assumption of continuous predictors. The target variable
is the median value of owner-occupied homes, medv, in $1,000. The 12 predictors are crim (per capita crime rate by
town), zn (proportion of residential land zoned for lots over 25,000 sq.ft), indus (proportion of non-retail business
acres per town), nox (nitric oxides concentration (parts per 10 million)), rm (average number of rooms per dwelling),
age (proportion of owner-occupied units built prior to 1940), dis (weighted distances to five Boston employment

11
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Table 4: Mean and standard deviation (in parenthesis) of estimation errors of M3

Distribution n Fourier Fourier_weighted Indicator Indicator_weighted csMAVE

I 100 0.744 0.657 0.668 0.561 0.602
(0.056) (0.113) (0.083) (0.142) (0.147)

I 200 0.702 0.472 0.559 0.369 0.374
(0.061) (0.177) (0.147) (0.155) (0.148)

I 400 0.621 0.252 0.408 0.223 0.203

(0.148) (0.102) (0.177) (0.064) (0.061)

II 100 0.751 0.698 0.683 0.570 0.635
(0.041) (0.076) (0.080) (0.136) (0.136)

II 200 0.719 0.521 0.584 0.355 0.387
(0.040) (0.163) (0.111) (0.097) (0.144)

II 400 0.686 0.267 0.452 0.252 0.201

(0.079) (0.084) (0.153) (0.052) (0.045)

III 100 0.739 0.676 0.654 0.563 0.571
(0.073) (0.106) (0.105) (0.150) (0.120)

III 200 0.704 0.546 0.523 0.368 0.330

(0.048) (0.162) (0.171) (0.153) (0.131)

III 400 0.616 0.252 0.297 0.202 0.179

(0.151) (0.113) (0.106) (0.055) (0.042)

Table 5: Mean and standard deviation (in parenthesis) of estimation errors of M4

Distribution n Fourier Fourier_weighted Indicator Indicator_weighted csMAVE

I 100 0.836 0.794 0.774 0.713 0.803
(0.072) (0.076) (0.074) (0.105) (0.087)

I 200 0.820 0.733 0.747 0.545 0.685
(0.066) (0.094) (0.060) (0.150) (0.116)

I 400 0.782 0.633 0.710 0.364 0.534
(0.059) ( 0.142) (0.081) (0.129) (0.155)

II 100 0.839 0.828 0.788 0.751 0.818
(0.067) (0.064) (0.062) (0.095) (0.095)

II 200 0.834 0.781 0.759 0.660 0.701
(0.171) (0.081) (0.040) (0.117) (0.111)

II 400 0.812 0.712 0.739 0.511 0.544
(0.059) (0.097) (0.038) (0.135) (0.151)

III 100 0.838 0.815 0.764 0.706 0.786
(0.074) (0.077) (0.069) (0.108) (0.109)

III 200 0.829 0.761 0.726 0.544 0.676
(0.071) (0.099) (0.083) (0.149) (0.123)

III 400 0.796 0.646 0.669 0.317 0.506
(0.069) (0.139) (0.113) (0.110) (0.146)

centres), rad (index of accessibility to radial highways), tax (full-value property-tax rate per $10,000), ptratio
(pupil-teacher ratio by town), lstat (percentage of lower status of the population), and b stands for 1000(B − 0.63)2

where B is the proportion of blacks by town.

We analyze these data with the weighted and unweighted Fourier and indicator ensembles, and csMAVE. We compute
unbiased error estimates by leave-one-out cross-validation. We estimate the sufficient reduction with the five methods
from the standardized training set, estimate the forward model from the reduced training set using mars, multivariate
adaptive regression splines [Fri91], in the R-package mda, and predict the target variable on the test set. We report
results for dimension k = 1. The analysis was repeated setting k = 2 with similar results. Table 9 reports the first
quantile, median, mean and third quantile of the out-of-sample prediction errors. The reductions estimated by the
ensemble CVE methods achieve lower mean and median prediction errors than csMAVE. Also, both ensemble CVE and
csMAVE are approximately on par with the variable selection methods in [JWHT13, Section 8.3.3].

Moreover, we plot the standardized response medv against the reduced Fourier and csMAVE predictors, BTX, in
Figure 3. The sufficient reductions are estimated using the entire data set. A particular feature of these data is that the
response medv appears to be truncated as the highest median price of exactly $50,000 is reported in 16 cases. Both
methods pick up similar patterns, which is captured by the relatively high absolute correlation of the coefficients of

the two reductions, |B̂T
FourierB̂csMAVE| = 0.786. The coefficients of the reductions, B̂Fourier and B̂csMAVE, are reported

in Table 10. For the Fourier ensemble, the variables rm and lstat have the highest influence on the target variable
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Table 6: Mean and standard deviation (in parenthesis) of estimation errors of M5

Distribution n Fourier Fourier_weighted Indicator Indicator_weighted csMAVE

I 100 0.705 0.682 0.708 0.691 0.709
(0.060) (0.067) (0.060) (0.056) (0.069)

I 200 0.679 0.634 0.688 0.642 0.687
(0.061) (0.054) (0.058) (0.060) (0.073)

I 400 0.644 0.588 0.660 0.591 0.646
(0.050) (0.047) (0.056) (0.061) (0.082)

I 800 0.622 0.543 0.629 0.493 0.553
(0.032) (0.078) (0.035) (0.100) (0.077)

II 100 0.712 0.688 0.713 0.697 0.722
(0.060) (0.069) (0.051) (0.057) (0.054)

II 200 0.693 0.669 0.694 0.669 0.697
(0.058) (0.065) (0.054) (0.057) (0.064)

II 400 0.670 0.614 0.681 0.633 0.687
(0.054) (0.059) (0.052) (0.050) (0.067)

II 800 0.660 0.584 0.672 0.585 0.589
(0.053) (0.045) (0.052) (0.055) (0.074)

III 100 0.706 0.687 0.703 0.691 0.724
(0.062) (0.062) (0.061) (0.061) (0.051)

III 200 0.701 0.655 0.702 0.668 0.703
(0.063) (0.069) (0.058) (0.074) (0.080)

III 400 0.659 0.603 0.664 0.604 0.682
(0.062) (0.072) (0.059) (0.077) (0.081)

III 800 0.657 0.562 0.651 0.513 0.602
(0.064) (0.068) (0.052) (0.109) (0.087)

Table 7: Mean and standard deviation (in parenthesis) of estimation errors of M6

Distribution n Fourier Fourier_weighted Indicator Indicator_weighted csMAVE

I 100 0.304 0.294 0.492 0.299 0.539
(0.092) (0.082) (0.135) (0.087) (0.255)

I 200 0.217 0.213 0.329 0.205 0.194

(0.057) (0.054) (0.107) (0.059) (0.061)

I 400 0.142 0.146 0.199 0.138 0.114

(0.036) ( 0.035) (0.069) (0.039) (0.034)

II 100 0.308 0.293 0.479 0.299 0.488
(0.094) (0.073) (0.129) (0.086) (0.248)

II 200 0.205 0.210 0.321 0.210 0.192

(0.058) (0.057) (0.095) (0.058) (0.061)

II 400 0.144 0.150 0.190 0.142 0.111

(0.039) (0.042) (0.055) (0.045) (0.032)

III 100 0.373 0.375 0.504 0.322 0.562
(0.152) (0.175) (0.143) (0.083) (0.273)

III 200 0.226 0.230 0.340 0.218 0.218

(0.065) (0.070) (0.100) (0.060) (0.083)

III 400 0.149 0.151 0.194 0.146 0.114

(0.039) (0.038) (0.068) (0.042) (0.032)

13



A PREPRINT - MARCH 1, 2021

Table 8: Mean and standard deviation (in parenthesis) of estimation errors of M7

Distribution n Fourier Fourier_weighted Indicator Indicator_weighted csMAVE

I 100 0.273 0.237 0.241 0.252 0.790
(0.169) (0.050) (0.136) (0.158) (0.316)

I 200 0.160 0.159 0.143 0.153 0.425
(0.093) (0.041) (0.083) (0.093) (0.391)

I 400 0.098 0.104 0.088 0.102 0.127
(0.024) ( 0.025) (0.021) (0.093) (0.202)

II 100 0.233 0.260 0.236 0.265 0.902
(0.057) (0.134) (0.142) (0.185) (0.219)

II 200 0.154 0.176 0.145 0.150 0.649
(0.058) (0.124) (0.093) (0.094) (0.414)

II 400 0.097 0.110 0.087 0.099 0.295
(0.025) (0.094) (0.022) (0.093) (0.391)

III 100 0.274 0.303 0.238 0.298 0.933
(0.201) (0.237) (0.160) (0.242) (0.163)

III 200 0.167 0.188 0.159 0.167 0.678
(0.120) (0.159) (0.150) (0.144) (0.408)

III 400 0.100 0.116 0.089 0.112 0.375
(0.023) (0.090) (0.023) (0.129) (0.431)

Table 9: Summary statistics of the out of sample prediction errors for the Boston Housing data obtained by LOO cross
validation

Fourier Fourier_weighted Indicator Indicator_weighted csMAVE

25% quantile 0.766 0.785 0.973 0.916 0.851
median 3.323 3.358 3.844 3.666 4.515
mean 19.971 19.948 19.716 19.583 24.309
75% quantile 11.129 10.660 11.099 10.429 16.521

medv. This agrees with the analysis in [JWHT13, Section 8.3.4] where it was found that these two variables are by far
the most important using different variable selection techniques, such as random forests and boosted regression trees. In
contrast, the reduction estimated by csMAVE has a lower coefficient for rm and higher ones for crim and rad.

Table 10: Rounded coefficients of the estimated reductions for B̂Fourier and B̂csMAVE from the full Boston Housing data

crim zn indus nox rm age dis rad tax ptratio b lstat

Fourier 0.21 -0.01 0.04 0.1 -0.62 0.16 0.2 0 0.2 0.27 -0.25 0.57
csMAVE 0.5 -0.05 -0.06 0.14 -0.27 0.11 0.24 -0.43 0.3 0.19 -0.15 0.51

8 Discussion

In this paper, we extend the mean subspace conditional variance estimation (CVE) of [FB21] to the ensemble conditional
variance estimation (ECVE), which exhaustively estimates the central subspace, by applying the ensemble device
introduced by [YL11]. In Section 5 we showed that the new estimator is consistent for the central subspace. The
regularity conditions for consistency require the joint distribution of the target variable and predictors, (Y,XT )T , be
sufficiently smooth. They are comparable to those under which the main competitor csMAVE [WX08] is consistent.

We analysed the estimation accuracy of ECVE in Section 6. We found that it is either on par with csMAVE or that it
exhibits substantial performance improvement in certain models. We could not characterize the defining features of
the models for which the ensemble conditional variance estimation outperforms csMAVE. This is an interesting line of
further research together with establishing more theoretical results such as the rate of convergence, estimation of the
structural dimension, and the limiting distribution of the estimator.

ECVE identifies the central subspace via the orthogonal complement and thus circumvents the estimation and inversion
of the variance matrix of the predictors X. This renders the method formally applicable to settings where the sample
size n is small or smaller than p, the number of predictors, and leads to potential future research.

Throughout, the dimension of the central subspace, k = dim(SY |X), is assumed to be known. The derivation of
asymptotic tests for dimension is technically very challenging due to the lack of closed-form solution and the lack of

14
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Figure 3: Panel A: Y vs. B̂T
FourierX. Panel B: Y vs. B̂T

csMAVEX

independence of all quantities in the calculation. The dimension can be estimated via cross-validation, as in [WX08]
and [FB21], or information criteria.
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Appendix

For any V ∈ S(p, q), defined in (3), we generically denote a basis of the orthogonal complement of its column
space span{V}, by U. That is, U ∈ S(p, p − q) such that span{V} ⊥ span{U} and span{V} ∪ span{U} = Rp,

UTV = 0 ∈ R(p−q)×q,UTU = Ip−q . For any x, s0 ∈ Rp we can always write

x = s0 +PV(x− s0) +PU(x− s0) = s0 +Vr1 +Ur2 (31)

where r1 = VT (x− s0) ∈ Rq, r2 = UT (x− s0) ∈ Rp−q .

Proof of Theorem 4. The density of X | X ∈ s0 + span{V} is given by

fX|X∈s0+span{V}(r1) =
fX(s0 +Vr1)∫

Rq fX(s0 +Vr)dr
(32)

where X is the p-dimensional continuous random covariate vector with density fX(x), s0 ∈ supp(fX) ⊂ Rp, and
V belongs to the Stiefel manifold S(p, q) defined in (3). Equation (32) follows from Theorem 3.1 of [LJFR04] and
the fact that (Rp,B(Rp)), where B(Rp) denotes the Borel sets on Rp, is a Polish space, which in turnguarantees the
existence of the regular conditional probability of X | X ∈ s0 + span{V} [see also [Fad85]]. Further, the measure
is concentrated on the affine subspace s0 + span{V} ⊂ Rp with density (32), which follows from Definition 8.38,
Theorem 8.39 of [Kar93], the orthogonal decomposition (31), and the continuity of fX (E.2).

By assumption (E.1), Y = gcs(B
TX, ǫ) with ǫ ⊥⊥ X. Assume f ∈ F for which assumption (E.4) holds and let B̃ be

a basis of SE(ft(Y )|X); that is, span{B̃} = SE(ft(Y )|X) ⊆ SY |X = span{B}. By Theorem 3, f(Y ) = g(B̃TX) + ǫ̃,
with E(ǫ̃ | X) = 0 and g twice continuously differentiable. Therefore,

L̃F (V, s0, f) = Var (f(Y ) | X ∈ s0 + span{V})

= Var
(
g(B̃TX) | X ∈ s0 + span{V}

)
+ 2cov

(
ǫ̃, g(B̃TX) | X ∈ s0 + span{V}

)

+Var (ǫ̃ | X ∈ s0 + span{V})

= Var
(
g(B̃TX) | X ∈ s0 + span{V}

)
+ Var (ǫ̃ | X ∈ s0 + span{V}) (33)

The covariance term in (33) vanishes since

cov
(
ǫ̃, g(B̃TX) | X ∈ s0 + span{V}

)
= E


E(ǫ̃ | X)︸ ︷︷ ︸

=0

g(B̃TX) | X ∈ s0 + span{V}




−E
(
g(B̃TX) | X ∈ s0 + span{V}

)
E


E(ǫ̃ | X)︸ ︷︷ ︸

=0

| X ∈ s0 + span{V}


 = 0

i.e. the sigma field generated by X ∈ s0 + span{V} is a subset of that generated by X. By the same argument and
using (32)

Var (ǫ̃ | X ∈ s0 + span{V}) = E(ǫ̃2 | X ∈ s0 + span{V})
= E(E(ǫ̃2 | X) | X ∈ s0 + span{V}) = E(h(X) | X ∈ s0 + span{V})

=

∫

supp(fX)∩Rq

h(s0 +Vr1)× fX(s0 +Vr1)dr1/t
(0)(V, s0, f))

where E(ǫ̃2 | X = x) = h(x). Using (32) again for the first term in (33) obtains formula (10) and (13).

To see that (7), (10), and (13) are well defined and continuous, let g̃(V, s0, r) = g(BT s0 + BTVr)lfX(s0 + Vr)
for l = 1, 2 or g̃(V, s0, r) = h(BT s0 + BTVr)fX(s0 + Vr) (for (13)) which are continuous by assumption. In
consequence, the parameter depending integrals (12) and (13) are well defined and continuous if (1) g̃(V, s0, ·) is
integrable for all V ∈ S(p, q), s0 ∈ supp(fX), (2) g̃(·, ·, r) is continuous for all r, and (3) there exists an integrable
dominating function of g̃ that does not depend on V and s0 [see [Heu95, p. 101]].

Furthermore, for some compact set K, t(l)(V, s0) =
∫
K
g̃(V, s0, r)dr, since supp(fX) is compact by (E.2). The

function g̃(V, s0, r) is continuous in all inputs by the continuity of g (E.4) and fX by (E.2), and therefore it attains a

17



A PREPRINT - MARCH 1, 2021

maximum. In consequence, all three conditions are satisfied so that t(l)(V, s0) is well defined and continuous. By the
same argument (13) is well defined and continuous.

Next, µl(V, s0) = t(l)(V, s0)/t
(0)(V, s0) is continuous since t(0)(V, s0) > 0 for all interior points s0 ∈ supp(fX) by

the continuity of fX, convexity of the support and Σx > 0. Then, L̃(V, s0, f) in (10) is continuous, which results in
(8) also being well defined and continuous by virtue of it being a parameter depending integral following the same
arguments as above. Moreover, (14) exists as the minimizer of a continuous function over the compact set S(p, q).
Then, (8) can be writen as

L∗
F (V, f) = Es0∼X

(
µ2(V, s0, f)− µ1(V, s0, f)

2
)
+ Es0∼X (Var (ǫ̃ | X ∈ s0 + span{V})) (34)

where s0 ∼ X signifies that s0 is distributed as X and the expectation is with respect to the distribution of s0.

It now suffices to show that the second term on the right hand side of (34) is constant with respect to V. By the law of
total variance,

Var(ǫ̃) = E (Var(ǫ̃ | X ∈ s0 + span{V})) + Var (E(ǫ̃ | X ∈ s0 + span{V}))
= E (Var(ǫ̃ | X ∈ s0 + span{V})) (35)

since E(ǫ̃ | X ∈ s0 + span{V}) = E(E(ǫ̃ | X)︸ ︷︷ ︸
=0

| X ∈ s0 + span{V}) = 0. Inserting (35) into (34) obtains

L∗
F (V, ft) = E

(
µ2(V,X, ft)− µ1(V,X, ft)

2
)
+ Var(ǫ̃)

= Es0∼X

(
Var

(
g(B̃TX) | X ∈ s0 + span{V}

))
+ Var(ǫ̃) (36)

Next we show that (8), or, equivalently (36)), attains its minimum at V ⊥ B̃. Let s0 ∈ supp(fX) and V = (v1, ...,vq) ∈
Rp×q , so that vu ∈ span{B} for some u ∈ {1, ..., q}. Since X ∈ s0 + span{V} ⇐⇒ X = s0 +PV(X− s0), by the
first term in (36)

Var
(
g(B̃TX) | X ∈ s0 + span{V}

)
= Var

(
g(B̃TX) | X = s0 +VVT (X− s0)

)

= Var
(
g(B̃T s0 + B̃TVVT (X− s0)) | X = s0 +VVT (X− s0)

)
≥ 0 (37)

If (37) is positive, i.e. B̃TVVT (X − s0) 6= 0 with positive probability, then the lower bound is not attained. If it

is zero; i.e., for V such that V and B̃T are orthogonal, then L∗
F (V, f) = Var(ǫ̃). Since s0 is arbitrary yet constant,

the same inequality holds for (8); that is, (8) attains its minimum for V such that V and B̃T are orthogonal. Since

span{B̃T } = SE(ft(Y )|X), (14) follows.

Proof of Theorem 6. Under assumptions (E.1), (E.2), and (E.3), (7) is well defined and continuous by arguments
analogous to those in the proof of Theorem 4. Therefore (17) exists as a minimizer of a continuous function over the
compact set S(p, q).
To show SY |X = span{Vq}⊥, let S̃ 6= SY |X with dim(S̃) = dim(SY |X) = k. Also, let Z ∈ Rp×(p−k) be an

orthonormal base of S̃⊥. Suppose LF (Z) = minV ∈S(p,p−k) LF (V). By (14) and (15) in Theorem 4, L∗
F (V, ft),

considered as a function from Rp×(p−kt), is minimized by an orthonormal base of S⊥
E(ft(Y )|X) with p− kt elements,

where kt = dim(SE(ft(Y )|X)) ≤ k. By (E.1), SE(ft(Y )|X) ⊆ SY |X = span{B}. As in the proof of Theorem 4,

we obtain that L∗
F (V, ft), as a function from Rp×(p−k), is minimized by an orthonormal base U ∈ Rp×(p−k) of

span{B}⊥.

Since S̃ = span{Z} 6= span{U} = SY |X, we can rearrange the bases U = (U1,U2) and Z = (Z1,Z2) such

that span{U1} = span{Z1} and span{U2} 6= span{Z2}. Since F characterises SY |X, the set A = {t ∈ ΩT :
span{U2} ⊆ SE(ft(Y )|X)} is non empty and by (E.3) A is not a null set with respect to the probability measure FT .

Thus,

min
V ∈S(p,p−k)

LF (V) = LF (Z) = Et∼FT
(L∗

F (Z, ft))

=

∫

A

L∗
F (Z, ft)︸ ︷︷ ︸

>L∗
F (U,ft)

dFT (t) +

∫

Ac

L∗
F (Z, ft)︸ ︷︷ ︸

=L∗
F (U,ft)

dFT (t) > Et∼FT
(L∗

F (U, ft)) ,

which contradicts our assumption that LF (Z) = minV ∈S(p,p−k) LF (V).
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Next we introduce notation and auxiliary lemmas for the proof of Theorem 8. We suppose all assumptions of Theorem 8
hold. We generically use the letter “C” to denote constants.

Suppose f is an arbitrary element of F and let

Ỹi = f(Yi) = g(B̃TXi) + ǫ̃i (38)

with span{B̃} = S
E(Ỹ |X) = SE(f(Y )|X). Condition (E.4) yields that g is twice continuously differentiable, and

E(|Ỹ |8) < ∞. Since f is fixed, we suppress it in t(l)(V, s0, f) and h̃(V, s0, f), so that

t(l)n (V, s0, f) = t(l)n (V, s0) =
1

nh
(p−q)/2
n

n∑

i=1

K

(
di(V, s0)

hn

)
Ỹ l
i , (39)

which is the sample version of (12) for l = 0, 1, 2. Eqn. (21) can be expressed as

ȳl(V, s0) =
t
(l)
n (V, s0)

t
(0)
n (V, s0)

, (40)

Lemma 12. Assume (E.2) and (K.1) hold. For a continuous function g, we let Zn(V, s0) =(∑
i g(Xi)

lK(di(V, s0)/hn)
)
/(nh

(p−q)/2
n ). Then,

E (Zn(V, s0)) =

∫

supp(fX)∩Rp−q

K(‖r2‖2)
∫

supp(fX)∩Rq

g̃(r1, h
1/2
n r2)dr1dr2

where g̃(r1, r2) = g(s0 +Vr1 +Ur2)
lfX(s0 +Vr1 +Ur2), x = s0 +Vr1 +Ur2 in (31).

Proof of Lemma 12. By (31), ‖PU(x− s0)‖2 = ‖Ur2‖2 = ‖r2‖2. Further

E (Zn(V, s0)) =
1

h
(p−q)/2
n

∫

supp(fX)

g(x)lK(‖PU(x− s0)/h
1/2
n ‖2)fX(x)dx

=
1

h
(p−q)/2
n

∫

supp(fX)∩Rp−q

∫

supp(fX)∩Rq

g(s0 +Vr1 +Ur2)
lK(‖r2/h1/2

n ‖2)×

fX(s0 +Vr1 +Ur2)dr1dr2

=

∫

supp(fX)∩Rp−q

K(‖r2‖2)
∫

supp(fX)∩Rq

g(s0 +Vr1 + h1/2
n Ur2)

lfX(s0 +Vr1 + h1/2
n Ur2)dr1dr2

where the substitution r̃2 = r2/h
1/2
n , dr2 = h

(p−q)/2
n dr̃2 was used to obtain the last equality.

Lemma 13. Assume (E.1), (E.2), (E.3), (E.4), (H.1) and (K.1) hold. Then, there exists a constant C > 0, such that

Var
(
nh(p−q)/2

n t(l)n (V, s0, f)
)
≤ nh(p−q)/2

n C

for n > n⋆ and t
(l)
n (V, s0), l = 0, 1, 2, in (39).

Proof of Lemma 13. Since a continuous function attains a finite maximum over a compact set,

supx∈supp(fX) |g(B̃Tx)| < ∞. Therefore,

|Ỹi| ≤ |g(B̃TXi)|+ |ǫ̃i| ≤ sup
x∈supp(fX)

|g(B̃Tx)|+ |ǫ̃i| = C + |ǫ̃i|

and |Ỹi|2l ≤
∑2l

u=0

(
2l
u

)
Cu|ǫ̃i|2l−u. Since (Ỹi,Xi) are i.i.d.,

Var
(
nh(p−q)/2

n t(l)n (V, s0, f)
)
= nVar

(
Ỹ lK

(
di(V, s0)

hn

))
≤ nE

(
Ỹ 2lK2

(
di(V, s0)

hn

))

= nE

(
|Ỹ |2lK2

(
di(V, s0)

hn

))
≤ n

2l∑

u=0

(
2l

u

)
CuE

(
|ǫ̃i|2l−uK2

(
di(V, s0)

hn

))

= n

2l∑

u=0

(
2l

u

)
CuE

(
E(|ǫ̃i|2l−u | Xi)K

2

(
di(V, s0)

hn

))
(41)
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for l = 0, 1, 2. Let E(|ǫ̃i|2l−u | Xi) = g2l−u(Xi) for a continuous (by assumption) function g2l−u(·) with finite
moments for l = 0, 1, 2 by the compactness of supp(fX). Using Lemma 12 with

Zn(V, s0) =
1

nh
(p−q)/2
n

∑

i

g2l−u(Xi)K
2 (di(V, s0)/hn) ,

where K2(·) fulfills (K.1), we calculate

E

(
E(|ǫ̃i|2l−u | Xi)K

2

(
di(V, s0)

hn

))
= h(p−q)/2

n E(Zn(V, s0))

= h(p−q)/2
n

∫

supp(fX)∩Rp−q

K2(‖r2‖2)×
∫

supp(fX)∩Rq

g2l−u(s0 +Vr1 + h1/2
n Ur2)fX(s0 +Vr1 + h1/2

n Ur2)dr1dr2 (42)

≤ h(p−q)/2
n C

since all integrands in (42) are continuous and over compact sets by (E.2) and the continuity of g2l−u(·) and K(·), so
that the integral can be upper bounded by a finite constant C. Inserting (42) into (41) yields

Var
(
nh(p−q)/2

n t(l)n (V, s0, f)
)
≤ nh(p−q)/2

n

2l∑

u=0

(
2l

u

)
CuC

︸ ︷︷ ︸
=C

= nh(p−q)/2
n C (43)

In Lemma 14 we show that di(V, s0) in (19) is Lipschitz in its inputs under assumption (E.2).

Lemma 14. Under assumption (E.2) there exists a constant 0 < C2 < ∞ such that for all δ > 0 and V,Vj ∈ S(p, q)
with ‖PV −PVj

‖ < δ and for all s0, sj ∈ supp(fX) ⊂ Rp with ‖s0 − sj‖ < δ,

|di(V, s0)− di(Vj , sj)| ≤ C2δ

for di(V, s0) given by (19)

Proof of Lemma 14.

|di(V, s0)− di(Vj , sj)| ≤
∣∣‖Xi − s0‖2 − ‖Xi − sj‖2

∣∣+
∣∣〈Xi − s0,PV(Xi − s0)〉 − 〈Xi − sj ,PVj (Xi − sj)〉

∣∣ = I1 + I2 (44)

where 〈·, ·〉 is the scalar product in Rp. We bound the first term on the right hand side of (44) as follows using
‖Xi‖ ≤ supz∈supp(fX) ‖z‖ = C1 < ∞ with probability 1 by (E.2).

I1 =
∣∣‖Xi − s0‖2 − ‖Xi − sj‖2

∣∣ ≤ 2 |〈Xi, s0 − sj〉|+
∣∣‖s0‖2 − ‖sj‖2

∣∣
≤ 2‖Xi‖‖s0 − sj‖+ 2C1‖s0 − sj‖ ≤ 2C1δ + 2C1δ = 4C1δ

by Cauchy-Schwartz and the reverse triangular inequality for which
∣∣‖s0‖2 − ‖sj‖2

∣∣ = |‖s0‖ − ‖sj‖| (‖s0‖+‖sj‖) ≤
‖s0 − sj‖2C1. The second term in (44) satisfies

I2 ≤
∣∣〈Xi, (PV −PVj

)Xi〉
∣∣+ 2

∣∣〈Xi,PVs0 −PVj
sj〉
∣∣+
∣∣〈s0,PVs0〉 − 〈sj ,PVj

sj〉
∣∣

≤ ‖Xi‖2‖PV −PVj
‖+ 2‖Xi‖

∥∥PV(s0 − sj) + (PV −PVj
)sj
∥∥+ |〈s0 − sj ,PVs0〉|+∣∣〈sj ,PVs0 −PVjsj〉

∣∣ ≤ C2
1δ + 2C1(δ + C1δ) + C1δ + C1(δ + C1δ) = 4C1δ + 4C2

1δ

Collecting all constants into C2 (i.e. C2 = 8C1 + 4C2
1 ) yields the result.

To show Theorems 8 and 15, we use the Bernstein inequality [S.N27]. Let {Zi, i = 1, 2, . . .}, be an independent
sequence of bounded random variables with |Zi| ≤ b. Let Sn =

∑n
i=1 Zi, En = E(Sn) and Vn = Var(Sn). Then,

P (|Sn − En| > t) < 2 exp

(
− t2/2

Vn + bt/3

)
(45)
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Assumption (K.2) yields

|K(u)−K(u′)| ≤ K∗(u′)δ (46)

for all u, u′ with |u− u′| < δ ≤ L2 and K∗(·) is a bounded and integrable kernel function [see [Han08]]. Specifically,
if condition (1) of (K.2) holds, then K∗(u) = L11{|u|≤2L2}. If condition (2) holds, then K∗(u) = L11{|u|≤2L2} +

1{|u|>2L2}|u− L2|−ν .

Let A = S(p, q)× supp(fX). In Lemma 15 and 16 we show that (39) converges uniformly in probability to (12) by
showing that the variance and bias terms vanish uniformly in probability, respectively.

Lemma 15. Under the assumptions of Theorem 8,

sup
V×s0∈A

∣∣∣t(l)n (V, s0)− E
(
t(l)n (V, s0)

)∣∣∣ = OP (an), l = 0, 1, 2 (47)

Proof of Lemma 15. The proof proceeds in 3 steps: (i) truncation, (ii) discretization by covering A = S(p, q) ×
supp(fX), and (iii) application of Bernstein’s inequality (45). If the function f in (38) is bounded, the truncation step

and the assumption an/h
(p−q)/2
n = O(1) are not needed.

(i) We let τn = a−1
n and truncate Ỹ l

i by τn as follows. We let

t
(l)
n,trc(V, s0) = (1/nh(p−q)/2

n )
∑

i

K(‖PU(Xi − s0)‖2/hn)Ỹ
l
i 1{|Ỹi|l≤τn}

(48)

be the truncated version of (39) and R̃
(l)
n = (1/nh

(p−q)/2
n )

∑
i |Ỹi|l1{|Ỹi|l>τn}

be the remainder of (39). Therefore

R
(l)
n (V, s0) = t

(l)
n (V, s0)− t

(l)
n,trc(V, s0) ≤ M1R̃

(l)
n due to (K.1) and

sup
V×s0∈A

∣∣∣t(l)n (V, s0)− E
(
t(l)n (V, s0)

)∣∣∣ ≤ M1(R̃
(l)
n + ER̃(l)

n )

+ sup
V×s0∈A

∣∣∣t(l)n,trc(V, s0)− E
(
t
(l)
n,trc(V, s0)

)∣∣∣ (49)

By Cauchy-Schwartz and the Markov inequality, P(|Z| > t) = P(Z4 > t4) ≤ E(Z4)/t4, we obtain

ER̃(l)
n =

1

h
(p−q)/2
n

E
(
|Ỹi|l1{|Ỹi|l>τn}

)
≤ 1

h
(p−q)/2
n

√
E(|Ỹi|2l)

√
P(|Ỹi|l > τn)

≤ 1

h
(p−q)/2
n

√
E(|Ỹi|2l)

(
E(|Ỹi|4l)

a−4
n

)1/2

= o(an), (50)

where the last equality uses the assumption an/h
(p−q)/2
n = O(1) and the expectations are finite due to (E.4) for

l = 0, 1, 2. No truncation is needed for l = 0 or if Ỹi = f(Yi) ≤ supf∈F |f(Yi)| < C < ∞.

Therefore, the first two terms of the right hand side of (49) converge to 0 with rate an by (50) and Markov’s inequality.

From this point on, Ỹi will denote the truncated version Ỹi1{|Ỹi|≤τn}
and we do not distinguish the truncated from the

untruncated tn(V, s0) since this truncation results in an error of magnitude an.

(ii) For the discretization step we cover the compact set A = S(p, q)×supp(fX) by finitely many balls, which is possible
by (E.2) and the compactness of S(p, q). Let δn = anhn and Aj = {V : ‖PV−PVj‖ ≤ δn}×{s : ‖s−sj‖ ≤ δn} be

a cover of A with ball centers Vj×sj . Then, A ⊂
⋃N

j=1 Aj and the number of balls can be bounded by N ≤ C δ−d
n δ−p

n

for some constant C ∈ (0,∞), where d = dim(S(p, q)) = pq − q(q + 1)/2. Let V × s0 ∈ Aj . Then by Lemma 14
there exists 0 < C2 < ∞, such that

|di(V, s0)− di(Vj , sj)| ≤ C2δn (51)

for di in (19). Under (K.2), which implies (46), inequality (51) yields
∣∣∣∣K
(
di(V, s0)

hn

)
−K

(
di(Vj , sj)

hn

)∣∣∣∣ ≤ K∗

(
di(Vj , sj)

hn

)
C2an (52)

for V × s0 ∈ Aj and K∗(·) an integrable and bounded function.
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Define r
(l)
n (Vj , sj) = (1/nh

(p−q)/2
n )

∑n
i=1 K

∗(di(Vj , sj)/hn)|Ỹi|l. For notational convenience we next drop the
dependence on l and j and observe that (52) yields

|t(l)n (V, s0)− t(l)n (Vj , sj)| ≤ C2anr
(l)
n (Vj , sj) (53)

Since K∗ fulfills (K.1) except for continuity, an analogous argument as in the proof of Lemma 12 yields that

E
(
r
(l)
n (Vj , sj)

)
< ∞. By subtracting and adding t

(l)
n (Vj , sj), E(t

(l)
n (Vj , sj)), the triangular inequality, (53) and

integrability of rln, we obtain
∣∣∣t(l)n (V, s0)− E

(
t(l)n (V, s0)

)∣∣∣ ≤
∣∣∣t(l)n (V, s0)− t(l)n (Vj , sj)

∣∣∣+
∣∣∣E
(
t(l)n (Vj , sj)− t(l)n (V, s0)

)∣∣∣

+
∣∣∣t(l)n (Vj , sj)− E

(
t(l)n (Vj , sj)

)∣∣∣ ≤ C2an (|rn|+ |E (rn) |) +
∣∣∣t(l)n (Vj , sj)− E

(
t(l)n (Vj , sj)

)∣∣∣

≤ C2an(|rn − E(rn)|+ 2|E(rn)|) +
∣∣∣t(l)n (Vj , sj)− E

(
t(l)n (Vj , sj)

)∣∣∣

≤ 2C3an + |rn − E(rn)|+
∣∣∣t(l)n (Vj , sj)− E

(
t(l)n (Vj , sj)

)∣∣∣ (54)

for any constant C3 > C2E(r
(l)
n (Vj , sj)) and n such that C2an ≤ 1, since a2n = o(1), which in turn yields that there

exists 0 < C3 < ∞ such that (54) holds.

Since supx∈A f(x) = max1≤j≤N supx∈Aj
f(x) ≤

∑N
j=1 supx∈Aj

f(x) for any cover of A and continuous function

f ,

P( sup
V×s0∈A

|t(l)n (V, s0)− E
(
t(l)n (V, s0)

)
| > 3C3an)

≤
N∑

j=1

P( sup
V×s0∈Aj

|t(l)n (V, s0)− E
(
t(l)n (V, s0)

)
| > 3C3an)

≤ N max
1≤j≤N

P( sup
V×s0∈Aj

|t(l)n (V, s0)− E
(
t(l)n (V, s0)

)
| > 3C3an) (55)

≤ N

(
max

1≤j≤N
P(|t(l)n (Vj , sj)− E

(
t(l)n (Vj , sj)

)
| > C3an) + max

1≤j≤N
P(|rn − E(rn)| > C3an)

)
≤

C δ−(d+p)

(
max

1≤j≤N
P(|t(l)n (Vj , sj)− E

(
t(l)n (Vj , sj)

)
| > C3an) + max

1≤j≤N
P(|rn − E(rn)| > C3an)

)

by the subadditivity of probability for the first inequality and (54) for the third inequality above, where the last inequality
is due to N ≤ C δ−d

n δ−p
n for a cover of A.

Finally, we bound the first and second term in the last line of (55) by the Bernstein inequality (45). For the first

term in the last line of (55), let Zi = Y l
i K(di(Vj , sj)/hn) and Sn =

∑
i Zi = nh

(p−q)/2
n t

(l)
n (Vj , sj). Then, Zi are

independent with |Zi| ≤ b = M1τn = M1/an by (K.1) and the truncation step (i). For Vn = Var(Sn), Lemma 13

yields nh
(p−q)/2
n C ≥ Vn with C > 0, and set t = C3annh

(p−q)/2
n . The Bernstein inequality (45) yields

P
(∣∣∣t(l)n (Vj , sj)− E

(
t(l)n (Vj , sj)

)∣∣∣ > C3an

)
< 2 exp

( −t2/2

Vn + bt/3

)
≤

2 exp

(
− (1/2)C2

3a
2
nn

2h
(p−q)
n

nh
(p−q)/2
n C + (1/3)M1τnC3annh

(p−q)/2
n )

)
≤ 2 exp

(
− (1/2)C3 log(n)

C/C3 +M1/3

)
= 2n−γ(C3)

where a2n = log(n)/(nh
(p−q)/2
n ) and γ(C3) = C3 (2(C/C3 +M1/3))

−1
that is an increasing function that can be

made arbitrarily large by increasing C3.

For the second term in the last line of (55), set Zi = Y l
i K

∗(di(Vj , sj)/hn) in (45) and proceed similarly to obtain

P
(∣∣∣r(l)n (Vj , sj)− E

(
r(l)n (Vj , sj)

)∣∣∣ > C3an

)
< 2n

−
(1/2)C3

C/C3+(1/3)M2 = 2n−γ(C3)

By (H.1), h
(p−q)/4
n ≤ 1 for n large and (H.2) implies 1/(nh

(p−q)/2
n ) ≤ 1 for n large, therefore h−1

n ≤ n2/(p−q) ≤ n2

since p − q ≥ 1. Then, δ−1
n = (anhn)

−1 ≤ n1/2h−1
n h

(p−q)/4
n ≤ n5/2. Therefore, (55) is smaller than

4C δ
−(d+p)
n n−γ(C3) ≤ 4Cn5(d+p)/2−γ(C3). For C3 large enough, we have 5(d + p)/2 − γ(C3) < 0 and

n5(d+p)/2−γ(C3) → 0. This completes the proof.
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If we assume |Ỹi| < M2 < ∞ almost surely, the requirement an/h
(p−q)/2
n = O(1) for the bandwidth can be dropped

and the truncation step of the proof of Lemma 15 is no longer necessary.

Lemma 16. Under (E.1), (E.2), (E.3), (E.4), (H.1), (K.1), and
∫
Rp−q K(‖r2‖2)dr2 = 1,

sup
V×s0∈A

∣∣∣t(l)(V, s0) + 1{l=2}h̃(V, s0)− E
(
t(l)n (V, s0)

)∣∣∣ = O(hn), l = 0, 1, 2 (56)

where t(l)(V, s0) and h̃(V, s0) are defined in Theorem 4.

Proof of Lemma 16. Let g̃(r1, r2) = g(B̃T s0 + B̃TVr1 + B̃TUr2)
lfX(s0 +Vr1 +Ur2), where r1, r2 satisfy the

orthogonal decomposition (31).

E
(
t(0)n (V, s0)

)
= E (K(di(V, s0)/hn)) /h

(p−q)/2
n

E(t(1)n (V, s0)) = E
(
K(di(V, s0)/hn)g(B̃

TXi)
)
/h(p−q)/2

n

+ E


K(di(V, s0)/hn)E(ǫ̃i | X)︸ ︷︷ ︸

=0


 /h(p−q)/2

n

E(t(2)n (V, s0)) = E
(
K(di(V, s0)/hn)g(B̃

TXi)
2
)
/h(p−q)/2

n

+ 2E


K(di(V, s0)/hn)E(ǫ̃i | X)︸ ︷︷ ︸

=0


 /h(p−q)/2

n

+ E


K(di(V, s0)/hn)E(ǫ̃

2
i | X)︸ ︷︷ ︸

=h(Xi)


 /h(p−q)/2

n

Then

E
(
t(l)n (V, s0)

)
=

∫

Rp−q

K(‖r2‖2)
∫

Rp

g̃(r1, hn
1/2r2)dr1dr2 (57)

holds by Lemma 12 for l = 0, 1. For l = 2, Ỹ 2
i = g2i + 2giǫi + ǫ2i with gi = g(B̃TXi) and can be handled as

in the case of l = 0, 1. Plugging in (57) the second order Taylor expansion for some ξ in the neighborhood of 0,

g̃(r1, hn
1/2r2) = g̃(r1, 0) + hn

1/2∇r2 g̃(r1, 0)
T r2 + hnr

T
2 ∇2

r2
g̃(r1, ξ)r2, yields

E
(
t(l)n (V, s0)

)
=

∫

Rq

g̃(r1, 0)dr1 +
√
hn

(∫

Rq

∇r2 g̃(r1, 0)dr1

)T ∫

Rp−q

K(‖r2‖2)r2dr2+

hn
1

2

∫

Rp−q

K(‖r2‖2)
∫

Rp

rT2 ∇2
r2
g̃(r1, ξ)r2dr1dr2 = t(l)(V, s0) + hn

1

2
R(V, s0)

since
∫
Rq g̃(r1, 0)dr1 = t(l)(V, s0) and

∫
Rp−q K(‖r2‖2)r2dr2 = 0 ∈ Rp−q due to K(‖ · ‖2) being even. Let

R(V, s0) =
∫
Rp−q K(‖r2‖2)

∫
Rp r

T
2 ∇2

r2
g̃(r1, ξ)r2dr1dr2. By (E.4) and (E.2), |rT2 ∇2

r2
g̃(r1, ξ)r2| ≤ C‖r2‖2 for

C = supx,y ‖∇2
r2
g̃(x,y)‖ < ∞, since a continuous function over a compact set is bounded. Then, R(V, s0) ≤

CC4

∫
Rp−q K(‖r2‖2)‖r2‖2dr2 < ∞ for some C4 > 0, since the integral over r1 is over a compact set by (E.2).

Lemma 17 follows directly from Lemmas 15 and 16 and the triangle inequality.

Lemma 17. Suppose (E.1), (E.2), (E.3), (E.4), (K.1), (K.2), (H.1) hold. If a2n = log(n)/nh
(p−q)/2
n = o(1), and

an/h
(p−q)/2
n = O(1), then for l = 0, 1, 2

sup
V×s0∈A

∣∣∣t(l)(V, s0) + 1{l=2}h̃(V, s0)− t(l)n (V, s0)
∣∣∣ = OP (an + hn)

Theorem 18. Suppose (E.1), (E.2), (E.3), (E.4), (K.1), (K.2), (H.1) hold. Let a2n = log(n)/nh
(p−q)/2
n = o(1),

an/h
(p−q)/2
n = O(1), then

sup
V×s0∈A

∣∣∣ȳl(V, s0)− µl(V, s0)− 1{l=2}h̃(V, s0)
∣∣∣ = oP (1), l = 0, 1, 2
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and

sup
V×s0∈A

∣∣∣L̃n,F (V, s0)− L̃F (V, s0)
∣∣∣ = oP (1) (58)

where ȳl(V, s0), µl(V, s0), L̃n,F (V, s0) and L̃F (V, s0) are defined in (21), (11), (22) and (10), respectively.

Proof of Theorem 18. Let δn = infV×s0∈An t(0)(V, s0), where t(0)(V, s0) is defined in (12), and An = S(p, q) ×
{x ∈ supp(fX) : |x− ∂supp(fX)| ≥ bn}, where ∂C denotes the boundary of the set C and |x−C| = infr∈C |x− r|,
for a sequence bn → 0 so that δ−1

n (an + hn) → 0 for any bandwidth hn that satisfies the assumptions. Then,

ȳl(V, s0) =
t
(l)
n (V, s0)

t
(0)
n (V, s0)

=
t
(l)
n (V, s0)/t

(0)(V, s0)

t
(0)
n (V, s0)/t(0)(V, s0)

(59)

We consider the numerator and enumerator of (59) separately. By Lemma 17

sup
V×s0∈An

∣∣∣∣∣
t
(0)
n (V, s0)

t(0)(V, s0)
− 1

∣∣∣∣∣ ≤
supA |t(0)n (V, s0)− t(0)(V, s0)|

infAn
t(0)(V, s0)

= OP (δ
−1
n (an + hn))

sup
V×s0∈An

∣∣∣∣∣
t
(l)
n (V, s0)

t(0)(V, s0)
− µl(V, s0)

∣∣∣∣∣ ≤
supA |t(l)n (V, s0)− t(l)(V, s0)|

infAn
t(0)(V, s0)

= OP (δ
−1
n (an + hn)),

and therefore by An ↑ A = S(p, q)× supp(fX),

lim
n→∞

sup
V×s0∈An

∣∣∣∣∣
t
(l)
n (V, s0)

t(0)(V, s0)
− µl(V, s0)

∣∣∣∣∣ = lim
n→∞

sup
V×s0∈A

∣∣∣∣∣
t
(l)
n (V, s0)

t(0)(V, s0)
− µl(V, s0)

∣∣∣∣∣
Substituting in (59), we obtain

ȳl(V, s0) =
t
(l)
n (V, s0)/t

(0)(V, s0)

t
(0)
n (V, s0)/t(0)(V, s0)

=
µl +OP (δ

−1
n (an + hn))

1 +OP (δ
−1
n (an + hn))

= µl +OP (δ
−1
n (an + hn)).

For l = 2, Ỹ 2
i = g(B̃TXi)

2 + 2g(B̃TXi)ǫ̃i + ǫ̃2i , and (58) follows from (10).

Lemma 19. Under (E.1), (E.2), (E.4), there exists 0 < C5 < ∞ such that

|µl(V, s0)− µl(Vj , s0)| ≤ C5‖PV −PVj
‖ (60)

for all interior points s0 ∈ supp(fX)

Proof. From the representation t̃(l)(PV, s0) in (16) instead of t(l)(V, s0), we consider µl(V, s0) = µl(PV, s0) as a
function on the Grassmann manifold since PV ∈ Gr(p, q). Then,

∣∣µl(PV, s0)− µl(PVj , s0)
∣∣ =

∣∣∣∣∣
t̃(l)(PV, s0)

t̃(0)(PV, s0)
− t̃(l)(PVj

, s0)

t̃(0)(PVj
, s0)

∣∣∣∣∣

≤ sup |t̃(0)(PV, s0)|
(inf t̃(0)(PV, s0))2

∣∣∣t̃(l)(PV, s0)− t̃(l)(PVj
, s0)

∣∣∣

+
sup t̃(l)(PV, s0)

(inf t̃(0)(PV, s0))2

∣∣∣t̃(0)(PV, s0)− t̃(0)(PVj
, s0)

∣∣∣ (61)

with supPV∈Gr(p,q) t̃
(0)(PV, s0) ∈ (0,∞) and infPV∈Gr(p,q) t̃

(0)(PV, s0) ∈ (0,∞) since t̃(l) is continuous, Σx > 0

and s0 ∈ supp(fX) an interior point.

By (E.2) and (E.4), g̃(x) = g(B̃Tx)fX(x) is twice continuous differentiable and therefore Lipschitz continuous on
compact sets. We denote its Lipschitz constant by L < ∞. Therefore,

∣∣∣t̃(l)(PV, s0)− t̃(l)(PVj
, s0)

∣∣∣ ≤
∫

supp(fX)

∣∣g̃(s0 +PVr)− g̃(s0 +PVj
r)
∣∣ dr

≤ L

∫

supp(fX)

‖(PV −PVj )r‖dr ≤ L

(∫

supp(fX)

‖r‖dr
)
‖PV −PVj‖ (62)

where the last inequality is due to the sub-multiplicativity of the Frobenius norm and the integral being finite by (E.2).
Plugging (62) in (61) and collecting all constants into C5 yields (60).
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Proof of Theorem 8. By (23) and (7),

|L∗
n(V, f)− L∗

F (V, f)| ≤
∣∣∣∣∣
1

n

∑

i

(
L̃n,F (V,Xi, f)− L̃F (V,Xi, f)

)∣∣∣∣∣

+

∣∣∣∣∣
1

n

∑

i

(
L̃F (V,Xi, f)− E(L̃F (V,X, f))

)∣∣∣∣∣ (63)

By Theorem 18,

∣∣∣∣∣
1

n

∑

i

L̃n,F (V,Xi, f)− L̃F (V,Xi, f)

∣∣∣∣∣ ≤ sup
V×s0∈A

∣∣∣L̃n,F (V, s0, f)− L̃F (V, s0, f)
∣∣∣ = oP (1) (64)

The second term in (63) converges to 0 almost surely for all V ∈ S(p, q) by the strong law of large numbers. In order
to show uniform convergence the same technique as in the proof of Theorem 15 is used. Let Bj = {V ∈ S(p, q) :
‖VVT −VjV

T
j ‖ ≤ ãn} be a cover of S(p, q) ⊂ ⋃N

j=1 Bj with N ≤ C ã−d
n = C (n/ log(n))d/2 ≤ C nd/2, where

d = dim(S(p, q)) is defined in the proof of Theorem 15. By Lemma 19,

|µl(V,Xi)− µl(Vj ,Xi)| ≤ C5‖PV −PVj
‖ (65)

Let Gn(V, f) =
∑

i L̃F (V,Xi, f)/n with E(Gn(V )) = L∗
F (V, f). Using (65) and following the same steps as in

the proof of Lemma 15 we obtain

|Gn(V, f)− L∗
F (V, f)| ≤ |Gn(V, f)−Gn(Vj , f)|

+ |Gn(Vj , f)− L∗
F (Vj , f)|+ |L∗

F (V, f)− L∗
F (Vj , f)|

≤ 2C6ãn + |Gn(Vj , f)− L∗
F (Vj , f)| (66)

for V ∈ Bj and some C6 > C5. Inequality (66) leads to

P

(
sup

V∈S(p,q)

|Gn(V, f)− L∗
F (V, f)| > 3C6ãn

)
≤ C N P( sup

V∈Bj

|Gn(V, f)− L∗
F (V, f)| > 3C6ãn)

≤ C nd/2P(|Gn(Vj , f)− L∗
F (Vj , f)| > C6ãn)

≤ C nd/2n−γ(C6) → 0 (67)

where the last inequality in (67) is due to (45) with Zi = L̃F (Vj ,Xi, f), which is bounded since L̃F (·, ·, f) is
continuous on the compact set A, and γ(C6) a monotone increasing function of C6 that can be made arbitrarily large
by choosing C6 accordingly. Therefore, supV∈S(p,q) |L∗

n(V, f)− L∗
F (V, f)| ≤ oP (1) + OP (ãn) which implies

Theorem 8.

Proof of Theorem 9. We apply [Ame85, Thm 4.1.1] to obtain consistency of the conditional variance estimator. This
theorem requires three conditions that guarantee the convergence of the minimizer of a sequence of random func-
tions L∗

n(PV, ft) to the minimizer of the limiting function L∗(PV, ft); i.e., Pspan{B̂t
kt

}⊥ = argminL∗
n(PV, f) →

Pspan{B}⊥ = argminL∗(PV, ft) in probability. To apply the theorem three conditions have to be met: (1) The param-

eter space is compact; (2) L∗
n(PV, ft) is continuous in PV and a measurable function of the data (Yi,X

T
i )i=1,...,n, and

(3) L∗
n(PV, ft) converges uniformly to L∗(PV, ft) and L∗(PV, ft) attains a unique global minimum at S⊥

E(ft(Y )|X).

Since L∗
n(V, ft) depends on V only through PV = VVT , L∗

n(V, ft) can be considered as functions on the Grassmann
manifold, which is compact, and the same holds true for L∗(V, ft) by (16). Further, L∗

n(V, ft) is by definition a measur-
able function of the data and continuous in V if a continuous kernel, such as the Gaussian, is used. Theorem 8 obtains the
uniform convergence and Theorem 4 that the minimizer is unique when L(V) is minimized over the Grassmann manifold

G(p, q), since SE(ft(Y )|X) = span{B̃} is uniquely identifiable and so is span{B̃}⊥ (i.e. ‖Pspan{B̂t
kt

} −Pspan{B̃}‖ =

‖B̂t
kt
(B̂t

kt
)T − B̃B̃T ‖ = ‖(Ip − B̃B̃T ) − (Ip − B̂t

kt
(B̂t

kt
)T )‖ = ‖Pspan{B̃}⊥ − Pspan{B̂t

kt
}⊥‖). Thus, all three

conditions are met and the result is obtained.
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Proof of Theorem 10. Let (tj)j=1,...,mn be an i.i.d. sample from FT and write

|Ln,F (V)− LF (V)| =

∣∣∣∣∣∣
1

mn

mn∑

j=1

(
L∗
n(V, ftj )− L∗(V, ftj )

)
∣∣∣∣∣∣

+

∣∣∣∣∣∣
1

mn

mn∑

j=1

(
L∗(V, ftj )− Et∼FT

(L∗(V, ft)
)
∣∣∣∣∣∣

(68)

Then, supV∈S(p,q) |L∗
n(V, ft)− L∗(V, ft)| ≤ 8M2, by the assumption supt∈ΩT

|ft(Y )| < M < ∞, and the triangle

inequality. That is, L∗
n(V, ft) estimates a variance of a bounded response ft(Y ) ∈ [−M,M ] and is therefore bounded

by the squared range 4M2 of ft(Y ). The same holds true for L∗(V, ft). Further, 8M2 is an integrable dominant
function so that Fatou’s Lemma applies.

Consider the first term on the right hand side of (68) and let δ > 0. By Markov’s and triangle inequalities and Fatou’s
Lemma,

lim sup
n

P


 sup

V∈S(p,q)

∣∣∣∣∣∣
1

mn

mn∑

j=1

L∗
n(V, ftj )− L∗(V, ftj )

∣∣∣∣∣∣
> δ




≤ 1

δ
lim sup

n
EFT


E( sup

V∈S(p,q)

∣∣∣∣∣∣
1

mn

mn∑

j=1

L∗
n(V, ftj )− L∗(V, ftj )

∣∣∣∣∣∣


 :Markov inequality

≤ 1

δ
lim sup

n
EFT


 1

mn

mn∑

j=1

E( sup
V∈S(p,q)

|L∗
n(V, ftj )− L∗(V, ftj )|




=
1

δ
lim sup

n
EFT

(
E( sup

V∈S(p,q)

|L∗
n(V, ftj )− L∗(V, ftj )|)

)

≤ 1

δ
EFT

(
E(lim sup

n
sup

V∈S(p,q)

|L∗
n(V, ftj )− L∗(V, ftj )|

)
=

1

δ
Et∼FT

(E(0)) = 0

since by Theorem 8 it holds lim supn supV∈S(p,q) |L∗
n(V, ftj )− L∗(V, ftj )| = 0.

For the second term on the right hand side of (68) we apply Theorem 2 of [Jen69] in [MMW+63, p. 40]:

Theorem 20. Let tj be an i.i.d. sample and L∗(V, ft) : Θ× ΩT → R where Θ is a compact subset of an euclidean
space. L∗(V, ft) is continuous in V and measurable in t by Theorem 4. If L∗(V, ftj ) ≤ h(tj), where h(tj) is
integrable with respect to FT , then

1

mn

mn∑

j=1

L∗(V, ftj ) −→ EFT
(L∗(V, ft)) uniformly over V ∈ Θ almost surely as n → ∞

Here V ∈ S(p, q) = Θ ⊆ Rpq , by supt∈ΩT
|ft(Y )| < M < ∞ and an analogous argument as for the first term in (68),

Zj(V) = L∗(V, ftj ) < 4M2. Therefore, E(supV∈S(p,q) |Zj(V)|) < 4M2, which is integrable. Further, since tj are

an i.i.d. sample from FT , Zj(V) is a i.i.d. sequence of random variables, Zj(V) is continuous in V by Theorem 4 and
the parameter space S(p, q) is compact. Then by Theorem 20,

sup
V∈S(p,q)

∣∣∣∣∣∣
1

mn

mn∑

j=1

L∗(V, ftj )− Et∼FT
(L∗(V, ft))

∣∣∣∣∣∣
−→ 0 almost surely as n → ∞

if limn→∞ mn = ∞. Putting everything together it follows that supV∈S(p,q) |Ln,F (V)− LF (V)| → 0 in probability
as n → ∞.
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Proof of Theorem 11. The proof is directly analogous to the proof of Theorem 9. The uniform convergence of the
target function Ln,F (V) is obtained by Theorem 10. The minimizer over Gr(p, q) and its uniqueness derive from
Theorem 6.

Proof of Theorem 7. In this proof we supress the dependence on f in the notation. The Gaussian kernel K satisfies

∂zK(z) = −zK(z). From (20) and (22) we have L̃n,F = ȳ2 − ȳ21 where ȳl =
∑

i wiỸ
l
i , l = 1, 2. We let

Kj = K(dj(V, s0)/hn), suppress the dependence on V and s0 and write wi = Ki/
∑

j Kj . Then, ∇Ki =

(−1/h2
n)Kidi∇di and ∇wi = −

(
Kidi∇di(

∑
j Kj)−Ki

∑
j Kjdj∇dj

)
/(hn

∑
j Kj)

2. Next,

∇ȳl = − 1

h2
n

∑

i

Ỹ l
i

Kidi∇di −Ki(
∑

j Kjdj∇dj)

(
∑

j Kj)2
= − 1

h2
n

∑

i

Ỹ l
i wi


di∇di −

∑

j

wjdj∇dj




= − 1

h2
n


∑

i

Ỹ l
i widi∇di −

∑

j

Ỹ l
jwj

∑

i

widi∇di


 = − 1

h2
n

∑

i

(Ỹ l
i − ȳl)widi∇di (69)

Then, ∇L̃n = ∇ȳ2 − 2ȳ1∇ȳ1, and inserting ∇ȳl from (69) yields ∇L̃n = (−1/h2
n)
∑

i(Y
2
i − ȳ2 − 2ȳ1(Yi −

ȳ1))widi∇di = (1/h2
n)
(∑

i

(
L̃n − (Yi − ȳ1)

2
)
widi∇di

)
, since Y 2

i − ȳ2 − 2ȳ1(Yi − ȳ1) = (Yi − ȳ1)
2 − L̃n.
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