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ABSTRACT

Conditional Variance Estimation (CVE) is a novel sufficient dimension reduction (SDR) method
for additive error regressions with continuous predictors and link function. It operates under the
assumption that the predictors can be replaced by a lower dimensional projection without loss of
information. In contrast to the majority of moment based sufficient dimension reduction methods,
Conditional Variance Estimation is fully data driven, does not require the restrictive linearity and
constant variance conditions, and is not based on inverse regression. CVE is shown to be consistent
and its objective function to be uniformly convergent. CVE outperforms the mean average variance
estimation, (MAVE), its main competitor, in several simulation settings, remains on par under others,
while it always outperforms the usual inverse regression based linear SDR methods, such as Sliced
Inverse Regression.

1 Introduction

Suppose (Y,XT )T have a joint continuous distribution, where Y ∈ R denotes a univariate response and X ∈ R
p a

p-dimensional covariate vector. We assume that the dependence of Y and X is modelled by

Y = g(BTX) + ǫ, (1)

where X is independent of ǫ with positive definite variance-covariance matrix, Var(X) = Σx, ǫ ∈ R is a mean

zero random variable with finite Var(ǫ) = E
(
ǫ2
)
= η2, g is an unknown continuous non-constant function, and

B = (b1, ...,bk) ∈ R
p×k of rank k ≤ p. Model (1) states that

E(Y | X) = E(Y | BTX) (2)

and requires the first conditional moment E(Y | X) = g(BTX) contain the entirety of the information in X about
Y and be captured by BTX, so that F (Y | X) = F (Y | BTX), where F (· | ·) denotes the conditional cumulative
distribution function (cdf) of the first given the second argument. That is, Y is statistically independent of X when
BTX is given and replacing X by BTX induces no loss of information for the regression of Y on X.
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Identifying the span of B; i.e., the column space of B, as only the span{B} is identifiable, suffices in order to identify
the sufficient reduction of X for the regression of Y on X. We assume, without loss of generality, B is semi-orthogonal,
i.e., BTB = Ik, since a change of coordinate system by an orthogonal transformation does not alter model (2).

For q ≤ p, let

S(p, q) = {V ∈ R
p×q : VTV = Iq}, (3)

denote the Stiefel manifold, that comprizes of all p× q matrices with orthonormal columns. S(p, q) is compact and
dim(S(p, q)) = pq − q(q + 1)/2 [see [4] and Section 2.1 of [31]]. Further let

Gr(p, q) = S(p, q)/S(q, q) (4)

denote the Grassmann manifold, i.e. all q-dimensional subspaces in R
p, which is exactly the quotient space of S(p, q)

with all q×q orthonormal matrices S(q, q), i.e. the basis of a linear subspace is unique up to orthogonal transformations.

The fact that only span{B} is identifiable, can be expressed through the Grassmann manifold Gr(p, q) in (4). The goal
of sufficient dimension reduction in model (1) is to find a subspace M ∈ Gr(p, k) such that any basis B ∈ S(p, k) of
M fulfills (1) or equivalently (2).

Finding sufficient reductions of the predictors to replace them in regression and classification without loss of information
is called sufficient dimension reduction [9]. The first split in sufficient dimension reduction taxonomy occurs between
likelihood and non-likelihood based methods. The former, which were developed more recently [11, 10, 12, 6, 5],
assume knowledge either of the joint family of distributions of (Y,XT )T , or the conditional family of distributions
for X | Y . The latter is the most researched branch of sufficient dimension reduction and comprizes of three classes
of methods: Inverse regression based, semi-parametric and nonparametric. Reviews of the former two classes can be
found in [1, 25, 22].

In this paper we present the conditional variance estimation, which falls in the class of nonparametric methods. The
estimators in this class minimize a criterion that describes the fit of the dimension reduction model (2) under (1) to the
observed data. Since the criterion involves unknown distributions or regression functions, nonparametric estimation is
used to recover span{B}. Statistical approaches to identify B in (2) include ordinary least squares and nonparametric

multiple index models [34]. The least squares estimator, Σ−1
x cov(X, Y ), always falls in span{B} [22, Th. 8.3].

Principal Hessian Directions [24] was the first sufficient dimension reduction estimator to target span{B} in (2). Its
main disadvantage is that it requires the so called linearity and constant variance conditions on the marginal distribution
of X. Its relaxation, Iterative Hessian Transformation [13], still requires the linearity condition in order to recover
vectors in span{B}.
The most competitive nonparametric sufficient dimension reduction method up to now has been minimum average
variance estimation (MAVE, [35]). It assumes model (1), bounded fourth derivative covariate density, and existence
of continuous bounded third derivatives for g. It uses a local first order approximation of g in (1) and minimizes the
expected conditional variance of the response given BTX.

The conditional variance estimator also targets and recovers span{B} in models (1) and (2). The objective function is
based on the intuition that the directions in the predictor space that capture the dependence of Y on X should exhibit
significantly higher variation in Y as compared with the directions along which Y exhibits markedly less variation. The
conditional variance estimator is a fully data-driven estimator that performs better than or is on par with minimum
average variance estimation in simulations. The conditional variance estimator differs from other approaches, including
MAVE, in that it only targets the span{B} and does not require an explicit form or estimation of the link function g.
As a result, it requires weaker assumptions on its smoothness.

2 Motivation

Let (Ω,F , P ) be a probability space, and X : Ω → R
p be a random vector with a continuous probability density

function fX and denote its support by supp(fX). Throughout ‖ · ‖ denotes the Frobenius norm for matrices, Euclidean
norm for vectors, and scalar product refers to the euclidean scalar product. For any matrix M, or linear subspace
M, we denote by PM the projection matrix on the column space of the matrix or on the subspace, i.e. PM =
M(MTM)−1MT ∈ R

p×p for M ∈ R
p×q. For any V ∈ S(p, q), defined in (3), we generically denote a basis of the

orthogonal complement of its column space span{V}, by U. That is, U ∈ S(p, p− q) such that span{V} ⊥ span{U}
and span{V} ∪ span{U} = R

p, UTV = 0 ∈ R
(p−q)×q,UTU = Ip−q . For any x, s0 ∈ R

p we can always write

x = s0 +PV(x− s0) +PU (x− s0) = s0 +Vr1 +Ur2 (5)

where r1 = VT (x− s0) ∈ R
q, r2 = UT (x− s0) ∈ R

p−q .

2
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In the sequel, we refer to the following assumptions as needed and the proofs of the Theorems are presented in the
Appendix.

(A.1). Model Y = g(BTX) + ǫ holds with Y ∈ R, g : Rk → R non constant in all arguments, B = (b1, ...,bk) ∈
R

p×k of rank k ≤ p, X ∈ R
p independent from ǫ, Var(X) = Σx is positive definite , E(ǫ) = 0, Var(ǫ) = η2 <∞.

(A.2). The link function g and the density fX : Rp → [0,∞) of X are twice continuous differentiable.

(A.3). E(|Y |8) <∞.

(A.4). supp(fX) is compact.

Remark. Assumption (A.4) is not as restrictive as it might seem. [36] showed in Proposition 11 that there is a compact
set S ⊂ R

p such that the mean subspace of model (1) is the same as the mean subspace of Y = g(BTX|S) + ǫ, where

X|S = X1{X∈S} and 1A is the indicator function of A. Further S can be assumed to be an ellipsoid and for all S̃ ⊇ S
the same assertion holds true.

Definition. For q ≤ p ∈ N and any V ∈ S(p, q), we define

L̃(V, s0) = Var(Y | X ∈ s0 + span{V}), (6)

where s0 ∈ R
p is a shifting point.

Definition. For V ∈ S(p, q), we define the objective function,

L(V) =

∫

Rp

L̃(V,x)fX(x)dx = E

(
L̃(V,X)

)
. (7)

L(V) in (7) is the objective function for the estimator we propose for the span of B in (1) and Theorem 1 provides
the statistical motivation for the objective function (7) of the conditional variance estimator. First we derive that both
population based functions (6) and (7) are well defined.

Let X be a p-dimensional continuous random vector with density fX(x), s0 ∈ supp(fX) ⊂ R
p, and V belongs to the

Stiefel manifold S(p, q) defined in (3). The function

fX|X∈s0+span{V}(r1) =
fX(s0 +Vr1)∫

Rq fX(s0 +Vr)dr
(8)

is a proper conditional density of X that is concentrated on the affine subspace s0 + span{V} using the concept of
regular conditional probability [21] under assumption (A.2). The detailed justification is given in the Appendix, where

we also show that under assumptions (A.1), (A.2) and (A.4), L̃(V, s0) in (6) and L(V) in (7) are well defined and
continuous. Moreover,

L̃(V, s0) = µ2(V, s0)− µ1(V, s0)
2 + η2 (9)

where

µl(V, s0) =

∫

Rq

g(BT s0 +BTVr1)
l fX(s0 +Vr1)∫

Rq fX(s0 +Vr)dr
dr1 =

t(l)(V, s0)

t(0)(V, s0)
(10)

with

t(l)(V, s0) =

∫

Rq

g(BT s0 +BTVr1)
lfX(s0 +Vr1)dr1. (11)

Theorem 1. Suppose V = (v1, ...,vq) ∈ S(p, q) and q ∈ {1, . . . , p}. Under assumptions (A.1), (A.2) and (A.4),

(a) For all s0 ∈ R
p and V such that there exist u ∈ {1, ..., q} with vu ∈ span{B}, L̃(V, s0) > Var(ǫ) = η2

and L(V) > η2.

(b) For all s0 ∈ R
p and span{V} ⊥ span{B}, L̃(V, s0) = η2 and L(V) = η2.

Proof. Let s0 ∈ R
p and V = (v1, ...,vq) ∈ R

p×q so that vu ∈ span{B} for some u ∈ {1, ..., q}. To obtain (a),
observe X ∈ s0 + span{V} ⇐⇒ X = s0 +PV (X− s0) and using (6) yields

L̃(V, s0) = Var
(
g(BTX) | X = s0 +VVT (X− s0)

)
+ Var(ǫ)

= Var
(
g(BT s0 +BTVVT (X− s0)) | X = s0 +VVT (X− s0)

)
+ η2 > η2 (12)

since BTVVT (X− s0) 6= 0 with probability 1, and therefore the variance term in (12) is positive. For V such that V
and B are orthogonal, BTVVT (X− s0) = 0 and (b) follows. Since s0 is arbitrary yet constant, the statements for
L(V) follow.

3
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Theorem 1 also has an intuitive geometrical interpretation for the proposed method. If X is not random, the deterministic
function Y = g(BTX) is constant in all directions orthogonal to B and varies in all other directions. If randomness is
introduced, as in model (1), then the variation in Y stems only from ǫ in all directions orthogonal to B. In all other
directions the variation comprizes of the sum of the variation of ǫ and of g(BTX). In consequence, the objective
function (7) captures the variation of Y as X varies in the column space of V and is minimized in the directions
orthogonal to B.

2.1 Conditional Variance Estimator (CVE)

We have shown that the objective function L(V) in (7) is well defined and continuous in Section 2. Let

Vq = argminV∈S(p,q) L(V). (13)

Vq is well defined as the minimizer of a continuous function over the compact set S(p, q). Nevertheless, Vq is not

unique since for all orthogonal O ∈ R
q×q such that OOT = Iq , L(VO) = L(V) as L(V) depends on V only through

span{V}. Nevertheless, it is a unique minimizer over the Grassmann manifold Gr(p, q) in (4). To see this, suppose
V ∈ S(p, q) is an arbitrary basis of a subspace M ∈ Gr(p, q). We can identify M through the projection PM = VVT .
By (5) we write x = Vr1 +Ur2. By the Fubini-Tornelli Theorem we obtain

t̃(l)(PM, s0) =

∫

supp(fX)

g(BT s0 +BTPMx)lfX(s0 +PMx)dx (14)

= t(l)(V, s0)

∫

supp(fX)∩Rp−q

dr2.

Therefore t̃(l)(PM, s0)/t̃
(0)(PM, s0) = t(l)(V, s0)/t

(0)(V, s0) and µl(·, s0) in (10) can also be viewed as a function
from Gr(p, q) to R. If the optimization (13) is over Gr(p, q), the objective function (7) has a unique minimum at

span{B}⊥ by Theorem 1. Therefore B is not uniquely identifiable but its span{B} is.

Corollary 2 follows directly from Theorem 1 and provides the means for identifying the linear projections of the
predictors satisfying (1).

Corollary 2. Under the assumptions (A.1), (A.2), and (A.3) the solution of the optimisation problem Vq in (13) is well
defined. Let k = dim(span{B}) and q = p− k,

(a) span{Vq} = span{B}⊥

(b) span{Vq}⊥ = span{B}

We next define the novel estimator of the sufficient reduction space, span{B}, in (1), which is motivated by Theorem 1
and Corollary 2 (b) serves as the estimation equation for the conditional variance estimator at the population level.

Definition. The Conditional Variance Estimator is defined to be any basis Bp−q of span{Vq}⊥. That is, the CVE of
B is any Bp−q such that

span{Bp−q} = span{Vq}⊥ (15)

When q = p− k, where k = rank(B) in (1), then the CVE obtains the population span{B}. Alternatively, we can also
target B directly by maximizing the objective function L(V). The downside of this approach is that X either needs
to be standardized, or the conditioning argument needs to be changed to X = s0 +PΣ−1

x
(span{V})

(X− s0), where

PM(span{V}) is the orthogonal projection operator with respect to the inner product 〈x,y〉M = xTMy. In either case,
the inversion of Σx is required. Our choice of targeting the orthogonal complement avoids the inversion of Σx, and the
estimation algorithm in Section 4 can be applied to regressions with p > n or p ≈ n, where n denotes the sample size.
Additionally, targeting the complement has computational advantages. The dimension of the search space span{Vq}⊥
is p− q, which is smaller than the dimension of the direct target space in (15) when q = p− k for small k, which is the
appropriate setting in a dimension reduction context.

3 Estimation

Assume (Yi,X
T
i )

T
i=1,...,n is an independent identical distributed sample from model (1). For V ∈ S(p, q) and s0 ∈ R

p,
we define

di(V, s0) = ‖Xi −Ps0+span{V}Xi‖2 = ‖Xi − s0‖2 − 〈Xi − s0,VVT (Xi − s0)〉
= ‖(Ip −VVT )(Xi − s0)‖2 = ‖PU(Xi − s0)‖2 (16)

4
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where 〈·, ·〉 is the usual inner product in R
p, PV = VVT and PU = Ip − PV using the orthogonal decomposition

given by (5).

Let hn ∈ R+ be a sequence of bandwidths and we call the set Ss0,V = {x ∈ R
p : ‖x − Ps0+span{V}x‖2 ≤ hn} a

slice that depends on both the shifting point s0 and the matrix V. hn represent the squared width of a slice around the
subspace s0 + span{V} and fulfills the following assumptions.

(H.1). For n→∞, hn → 0

(H.2). For n→∞, nh
(p−q)/2
n →∞

Remark. For obtaining the consistency of the proposed estimator (H.2) will be strengthened to log(n)/nh
(p−q)/2
n → 0.

Let K be a function satisfying the following assumptions.

(K.1). K : [0,∞)→ [0,∞) is a non increasing and continuous function, so that |K(z)| ≤M1, with
∫
Rq K(‖r‖2)dr <

∞ for q ≤ p− 1.

(K.2). There exist positive finite constants L1 and L2 such that the kernel K satisfies one of the following:

(1) K(u) = 0 for |u| > L2 and for all u, ũ it holds |K(u)−K(ũ)| ≤ L1|u− ũ|
(2) K(u) is differentiable with |∂uK(u)| ≤ L1 and for some ν > 1 it holds |∂uK(u)| ≤ L1|u|−ν for |u| > L2

Examples of functions that satisfy (K.1) and (K.2) include the Gaussian, K(z) = c exp(−z2/2), the exponential,
K(z) = c exp(−z), and the squared Epanechnikov kernel, K(z) = cmax{(1 − z2), 0}2 (i.e. polynomial kernels),
where c is a constant. The rectangular, K(z) = cI(z ≤ 1), does not fulfill the assumptions but will be mentioned for
intuitive explanations. A list of further kernel functions is given in [28, Table 1].

3.1 The estimator of L(V) and its uniform convergence

Definition. For i = 1, . . . , n, we define

wi(V, s0) =
K
(

di(V,s0)
hn

)

∑n
j=1K

(
dj(V,s0)

hn

) (17)

Definition. The sample based estimate of L̃(V, s0) is defined as

L̃n(V, s0) =
n∑

i=1

wi(V, s0)(Yi − ȳ1(V, s0))2 = ȳ2(V, s0)− ȳ1(V, s0)2 (18)

where ȳl(V, s0) =
∑n

i=1 wi(V, s0)Y
l
i , l = 1, 2.

Definition. The estimate of the objective function L(V) in (7) is defined as

Ln(V) =
1

n

n∑

i=1

L̃n(V,Xi), (19)

where each data point Xi is a shifting point.

To obtain insight as to the choice of L̃n(V, s0) in (18), let us consider the rectangular kernel, K(z) = 1{z≤1}. In this

case, L̃n(V, s0) computes the empirical variance of the Yi’s corresponding to the Xi’s that are no further than
√
hn

away from the affine space s0 + span{V}, i.e., di(V, s0) = ‖Xi − Ps0+span{V}Xi‖2 ≤ hn. If a smooth kernel is

used, such as the Gaussian in our simulation studies, then L̃n(V, s0) is also smooth, which allows the computation of
gradients required to solve the optimization problem.

In Theorem 3 we state the conditions under which Ln(V) in (19) converges uniformly to its population counterpart in
(7). This result will lead to the consistency of our estimator.

Theorem 3. Let ã2n = log(n)/n. Under (A.1), (A.2), (A.3), (A.4), (K.1), (K.2), (H.1), a2n = log(n)/nh
(p−q)/2
n = o(1) ,

and an/h
(p−q)/2
n = O(1),

sup
V∈S(p,q)

|Ln(V)− L(V)| → 0 in probability as n→∞ (20)

5
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3.2 The Conditional Variance Estimator

Next we define the estimator we propose for span{B} in (1). Our main theoretical result follows in Theorem 4 which
establishes the consistency of our estimator.

Definition. The sample based Conditional Variance Estimator B̂p−q is any basis of span{V̂q}⊥ where V̂q =
argminV∈S(p,q) Ln(V).

Theorem 4. Under (A.1), (A.2), (A.3), (A.4), (K.1), (K.2), (H.1), a2n = log(n)/nh
(p−q)/2
n = o(1), and an/h

(p−q)/2
n =

O(1), span{B̂k} is a consistent estimator for span{B} in model (1); i.e.,

‖P
B̂k
−PB‖ → 0 in probability as n→∞.

3.3 Weighted estimation of L(V)

The set of points {x ∈ R
p : ‖x−Ps0+span{V}x‖2 ≤ hn} represents a slice in the a subspace of Rp about s0+span{V}.

In the estimation of L(V) two different weighting schemes are used:

(a) Within a slice. The weights are defined in (17) and are used to calculate (18).

(b) Between slices. Equal weights 1/n are used to calculate (19).

The choice of weights can be potentially influential. Especially the between weighting scheme can further be refined by
assigning more weight to slices with more points. This can be realized by altering (19) to

L(w)
n (V) =

n∑

i=1

w̃(V,Xi)L̃n(V,Xi), with (21)

w̃(V,Xi) =

∑n
j=1K(dj(V,Xi)/hn)− 1

∑n
l,u=1K(dl(V,Xu)/hn)− n

=

∑n
j=1,j 6=iK(dj(V,Xi)/hn)∑n

l,u=1,l 6=uK(dl(V,Xu)/hn)
(22)

For example, if a rectangular kernel is used,
∑n

j=1,j 6=iK(dj(V,Xi)/hn) is the number of Xj (j 6= i) points in the

slice corresponding to L̃n(V,Xi). Therefore this slice gets higher weight, if the number of Xj points in this slice is
larger. That is, the more observations we use for estimating L(V,Xi) the better its accuracy. The denominator in (22)
guarantees the weights w̃(V,Xi) sum up to one.

3.4 Bandwidth selection

The performance of conditional variance estimation depends crucially on the choice of the bandwidth sequence hn
that controls the bias-variance trade-off if the mean squared error is used as measure for accuracy, in the sense that the
smaller hn is, the lower the bias and the higher the variance and vice versa. Furthermore, the choice of hn depends on
p, q, the sample size n, and the distribution of X. We assume throughout the bandwidth satisfies assumptions (H.1) and
(H.2). We will use Lemma 5 to derive a data-driven bandwidth we use in the computation of our estimator.

Lemma 5. Let M be a p× p positive definite matrix. Then,

tr(M)

p
= argmins>0 ‖M− sIp‖ (23)

Proof. Let U be the p×pmatrix whose columns are the eigenvectors of M corresponding to its eigenvalues λ1 ≥ . . . ≥
λp > 0. Then, M = Udiag(λ1, ..., λp)U

T , which implies ‖M−sIp‖22 = ‖diag(λ1, ..., λp)−sIp‖2 =
∑p

l=1(λl−s)2.

Taking the derivative with respect to s, setting it to 0 and solving for s obtains (23), since
∑p

l=1 λl = tr(M).

If the predictors are multivariate normal, their joint density is approximated by N(µX, σ
2Ip) by Lemma 5, with

σ2 = tr(Σx)/p. This results in no bandwidth dependence on V and leads to a rule for bandwidth selection, as follows.

Under X ∼ Np(µX, σ
2Ip), X̃i = Xi −Xj ∼ Np(0, 2σ

2Ip) for i 6= j, where we suppress the dependence on j for

notational convenience. Since all data are used as shifting points, di(V,Xj) = ‖Xi−Xj‖2− (Xi−Xj)
TVVT (Xi−

Xj) = ‖X̃i‖2 − X̃T
i VVT X̃i. Let

nObs = E

(
#{i ∈ {1, ..., n} : X̃i ∈ spanh{V}}

)

= 1 + (n− 1)P(d1(V,X2) ≤ h) = 1 + (n− 1)P(‖X̃‖2 − X̃TVVT X̃ ≤ h) (24)

6
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where spanh{V} = {x ∈ R
p : ‖x−Pspan{V}x‖2 ≤ h} and X̃ = X−X∗, with X∗ an independent copy of X. nObs

is the expected number of points in a slice. Given a user specified value for nObs, h is the solution to (24).

Let x ∈ R
p. For any V ∈ S(p, q) in (3), there exists an orthonormal basis U ∈ R

p×(p−q) of span{V}⊥ such that

x = Vr1+Ur2, by (5). Then, X̃ = VR1+UR2, with R1 = VT X̃ ∼ N(0, 2σ2Iq),R2 = UT X̃ ∼ N(0, 2σ2Ip−q),

and X̃TVVT X̃ = ‖R1‖2 and ‖X̃‖2 = ‖R1‖2 + ‖R2‖2. Therefore,

P

(
‖X̃‖2 − X̃TVVT X̃ ≤ h

)
= P(‖R2‖2 ≤ h) = χp−q

(
h

2σ2

)
, (25)

where χp−q is the cumulative distribution function of a chi-squared random variable with p− q degrees of freedom.
Plugging (25) in (24) obtains

nObs = 1 + (n− 1)χp−q

(
h

2σ2

)
. (26)

Solving (26) for h and Lemma 5 yield

hn(nObs) = χ−1
p−q

(
nObs− 1

n− 1

)
2tr(Σ̂x)

p
, (27)

where Σ̂x =
∑

i(Xi − X̄)(Xi − X̄)T /n and X̄ =
∑

i Xi/n.

In order to ascertain hn satisfies (H.1) and (H.2), a reasonable choice is to set nObs = γ(n) for a function γ(·) with

γ(n)→∞, γ(n)/n ≤ 1 and γ(n)/n→ 0. For example, nObs = γ(n) = nβ with β ∈ (0, 1) can be used.

Alternatively, a plug-in bandwidth based on rule-of-thumb rules of the form csn−1/(4+k), where s is an estimate of
scale and c a number close to 1, such as Silverman’s (c = 1.06, s =standard deviation) or Scott’s (c = 1, s =standard
deviation), used in nonparametric density estimation [see [29]], is

hn = 1.22
2tr(Σ̂x)

p

(
n−1/(4+p−q)

)2
. (28)

The term 2tr(Σ̂X)/p can be interpreted as the variance of Xi −Xj and p− q is the true dimension k. We use 1.2 as c
based on empirical evidence from simulations. Since both (27) and (28) yield satisfactory results, we opted against
cross validation for bandwidth selection because of the computational burden involved, and used the bandwidth in (28)
in simulations and data analyses.

4 Optimization Algorithm

A Stiefel manifold optimization algorithm is used to obtain the solution of the sample version of the optimization

problem (13). To calculate V̂q in (3.2), a curvilinear search is carried out [33, 31], which is similar to gradient descent.

First an arbitrary starting value V(0) is selected by drawing a p × q matrix from the invariant measure; i.e., the
distribution that corresponds to the uniform, on S(p, q), see [8]. The Q-component of the QR decomposition of a p× q
matrix with independent standard normal entries follows the invariant measure [7]. The step-size τ > 0, the step size
reduction factor γ ∈ (0, 1), and tolerance tol > 0 are fixed at the outset.

Result: V(end)

Initialize: V(0), τ = 1, tol = 10−3, γ = 0.5 error = tol + 1, maxit = 50, count = 0;
while error > tol and count ≤ maxit do

• G = ∇VLn(V
(j)) ∈ R

p×q , W = GVT −VGT

• V(j+1) = (Ip + τW)−1(Ip − τW)V(j)

• error = ‖V(j)V(j)T −V(j+1)V(j+1)T ‖/√2q
if Ln(V

(j+1)) > Ln(V
(j)) then

V(j+1) ← V(j); τ ← τγ; error← tol + 1
else

count← count + 1
τ ← τ

γ

end

end
Algorithm 1: Curvilinear search
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Under mild regularity conditions on the objective function, [33] showed that the sequence generated by the algorithm
converges to a stationary point if the Armijo-Wolfe conditions [27] are used for determining the stepsize τ .

The Armijo-Wolfe conditions require the evaluation of the gradient for each potential step size until one is found that
fulfills the conditions and the step is accepted, i.e. for the determination of one step size the gradient has to be evaluated
multiple times. Since for the conditional variance estimator, the gradient computation incurs the highest computational
cost, we use simpler conditions to determine the step size. Specifically, we simply require the step decrease the
objective function, otherwise the step size τ is decreased by the factor γ ∈ (0, 1)). These simplified conditions are
computationally less expensive and exhibit same behavior as the Armijo-Wolfe conditions in the simulations. Further
we capped the maximum number of steps at maxit = 50 steps, since the algorithm converged in about 10 iterations in
all our simulations.

The algorithm is repeated for m arbitrary V(0) starting values drawn from the invariant measure on S(p, q). Among

those, the value at which Ln in (19) is minimal is selected as V̂q .

The algorithm requires the computation of the gradient of Ln(V) in (19) or (21). We compute the gradient of the
objective function for the Gaussian kernel in Theorems 6 and 7. The Gaussian kernel is the default kernel we use in the
implementation of the estimation algorithm in the R code that accompanies this manuscript.

Theorem 6. Let K(z) = exp (−z2/2) be the Gaussian kernel. Then, the gradient of L̃n(V, s0) in (18) is given by

∇VL̃n(V, s0) =
1

h2n

n∑

i=1

(L̃n(V, s0)− (Yi − ȳ1(V, s0))2)widi∇Vdi(V, s0) ∈ R
p×q,

and the gradient of Ln(V) in (19) is

∇VLn(V) =
1

n

n∑

i=1

∇VL̃n(V,Xi).

with wi = w(V,Xi) in (17).

The weighted version of conditional variance estimation in Section 3.3 is expected to increase the accuracy of the
estimator for unevenly spaced data. When (21) and the gradient in (29) are used in the optimisation algorithm, we refer

to the estimator as weighted conditional variance estimation. If (21) and the gradient
∑n

i=1 w̃(V,Xi)∇VL̃n(V,Xi)
is used; i.e., the first summand in (29) is dropped, we refer to it as partially weighted conditional variance estimation.
For both, we replace G in algorithm 1 with the corresponding gradient derived in Theorem 7.

Theorem 7. Let K(z) = exp (−z2/2) be the Gaussian kernel. Then, the gradient of L
(w)
n (V) in (21) is given by

∇VL
(w)
n (V) =

n∑

i=1

(
∇Vw̃(V,Xi)L̃n(V,Xi) + w̃(V,Xi)∇VL̃n(V,Xi)

)
, (29)

where ∇VL̃n(V,Xi) is given in Theorem 6. Furthermore,

∇Vw̃(V,Xi) = −
1

h2n

∑

j


 Kj,i∑n

l,u=1Kl,u
dj,i∇Vdj,i − w̃i

n∑

l,u=1

Kl,u∑n
o,s=1Ko,s

dl,u∇Vdl,u




with w̃i = w̃(V,Xi) in (22), Kj,i = K(dj(V,Xi)/hn), and dj,i = dj(V,Xi) given in (16).

4.1 A study of the behaviour of Ln(V)

We explore how accurately the sample version (19) of the objective function estimates the target subspace in an example.
We consider a bivariate normal predictor vector, X = (X1, X2)

T ∼ N(0,Σx). We generate the response from
Y = g(BTX) + ǫ = X1 + ǫ, with ǫ ∼ N(0, η2) independent of X. In this setting, k = 1, B = (1, 0)T , g(z) = z ∈ R

in model (1). With these specifications, (10) becomes

µl(V, s0) =

∫

R

(BT s0 +BTVr)lfX|X∈s0+span{V}(r)dr (30)

8
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Dropping the terms that do not contain r in (8) yields

fX|X∈s0+span{V}(r) ∝ fX(s0 +Vr) ∝ exp

(
−1

2
(s0 + rV)TΣ−1

x (s0 + rV)

)

∝ exp

(
−1

2

(
2rVTΣ−1

x s0 + r2VTΣ−1
x V

))
= exp

(
− 1

2σ2

(
2rσ2VTΣ−1

x s0 + r2
))

∝ exp

(
− 1

2σ2
(r − α)2

)
, (31)

where σ2 = 1/(VTΣ−1
x V), α = −σ2VTΣ−1

x s0 and the symbol ∝ stands for proportional to. Letting ψ(z) denote the
density of a standard normal variable, (31) obtains

fX|X∈s0+span{V}(r) =
1

σ
ψ

(
r − α
σ

)
(32)

for V, s0 ∈ R
2×1. Inserting (32) in (30) yields

∫

R

(BT s0 +BTVr)l
1

σ
ψ

(
r − α
σ

)
dr =

{
BT s0 +BTVα l = 1

(BT s0)
2 + 2(BT s0)(B

TV)α+ (BTV)2(σ2 + α2) l = 2

Using (9), (6) and (7), yields L̃(V, s0) = µ2(V, s0)− µ1(V, s0)
2 + η2 = (BTV)2σ2 + η2, so that

L(V) = E

(
L̃(V,X)

)
= (BTV)2σ2 + η2 =

(BTV)2

VTΣ−1
x V

+ η2 (33)

From (33) we can easily see that L(V) attains its minimum at V ⊥ B. Also, if Σx = I2, the maximum of L(V)

is attained at V = B. To visualize the behavior of L̃n(V) as the sample size increases, we parametrize V by

V(θ) = (cos(θ), sin(θ))T , θ ∈ [0, π]. Since B = (1, 0)T , the minimum of L̃(V) is at V(π/2) = (0, 1)T , which is
orthogonal to B.

The true L(V(θ)) and its estimates Ln(V(θ)) are plotted for samples of different sizes n in Figure 1. Ln(V(θ))
approximates L(V) fast and attains its minimum at the same value as L(V) even for n = 10.

As an aside, we note that assumption (A.4) is violated in this example, which suggests that the proposed estimator of
conditional variance estimation may apply under weaker assumptions.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Ln(V) versus L(V)

θ

L(V)
n = 10

n = 50

n = 100

n = 500

Figure 1: Solid black line is L(V(θ)) = cos(θ)2 + 0.12, colored is Ln(V(θ)), θ ∈ [0, π], n = 10, 50, 100, 500. The
vertical black line is at θ = π/2
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5 Simulation studies

We compare the estimation accuracy of conditional variance estimation with the forward model based sufficient
dimension reduction methods, mean outer product gradient estimation (meanOPG), mean minimum average variance
estimation (meanMAVE) [32], refined outer product gradient (rOPG), refined minimum average variance estimation
(rmave) [35, 22], and principal Hessian directions (pHd) [24, 15], and the inverse regression based methods, sliced
inverse regression (SIR) [23] and sliced average variance estimation (SAVE) [14]. The dimension k is assumed to be
known throughout.

We report results for conditional variance estimation using the “plug-in” bandwidth in (28) and three different conditional
variance estimation versions, CVE, wCVE, and rCVE. CVE is obtained by using m = 10 arbitrary starting values in the
optimization algorithm and optimizing (19) as described in Section 4. rCVE, or refined weighted CVE, is obtained by

setting the starting value V(0) at the optimizer of CVE, and using (21) in the optimization algorithm in Section 4 with
the partially weighted gradient as described in Section 3.3. wCVE, or weighted CVE, is obtained by optimizing (21)
with partially weighted gradient as described in Sections 3.3 and 4. Methods rOPG and rmave refer to the original
refined outer product gradient and refined minimum average variance estimation algorithms published in [35]. They are
implemented using the R code in [22] with number of iterations nit = 25, since the algorithm is seen to converge by 25.
The dr package is used for the SIR, SAVE and pHd calculations, and the MAVE package for mean outer product gradient
estimation (meanOPG) and mean minimum average variance estimation (meanMAVE). The source code for conditional
variance estimation can be downloaded from https://git.art-ist.cc/daniel/CVE.

Table 1 lists the seven models (M1-M7) we consider. Throughout, we set p = 20, b1 = (1, 1, 1, 1, 1, 1, 0, ..., 0)T /
√
6,

b2 = (1,−1, 1,−1, 1,−1, 0, ..., 0)T /
√
6 ∈ R

p for M1-M5. For M6, b1 = e1,b2 = e2 and b3 = ep, and for M7
b1,b2,b3 are the same as in M6 and b4 = e3, where ej denotes the p-vector with jth element equal to 1 and all others
are 0. The error term ǫ is independent of X for all models. In M2, M3, M4, M5 and M6, ǫ ∼ N(0, 1). For M1 and M7,
ǫ has a generalized normal distribution GN(a, b, c) with densitiy fǫ(z) = c/(2bΓ(1/c)) exp((|z − a|/b)c), see [26]
with location 0 and shape-parameter 0.5 for M1, and shape-parameter 1 for M7 (Laplace distribution). For both the
scale-parameter is chosen such that Var(ǫ) = 0.25.

Table 1: Models

Name Model X distribution ǫ distribution k n

M1 Y = cos(bT
1 X) + ǫ X ∼ Np(0,Σ) GN(0,

√
1/2, 0.5) 1 100

M2 Y = cos(bT
1 X) + 0.5ǫ X ∼ λZ1p +Np(0, Ip) N(0, 1) 1 100

M3 Y = 2 log(|bT
1 X|+ 2) + 0.5ǫ X ∼ Np(0, Ip) N(0, 1) 1 100

M4 Y = (bT
1 X)/(0.5 + (1.5 + bT

2 X)2) + 0.5ǫ X ∼ Np(0,Σ) N(0, 1) 2 200

M5 Y = cos(πbT
1 X)(bT

2 X+ 1)2 + 0.5ǫ X ∼ U([0, 1]p) N(0, 1) 2 200

M6 Y = (bT
1 X)2 + (bT

2 X)2 + (bT
3 X)2 + 0.5ǫ X ∼ Np(0, Ip) N(0, 1) 3 200

M7 Y = (bT
1 X)(bT

2 X)2 + (bT
3 X)(bT

4 X) + ǫ X ∼ t3(Ip) GN(0,
√

1/Γ(6), 1) 4 400

The variance-covariance structure of X in models M1 and M4 satisfies Σi,j = 0.5|i−j| for i, j = 1, . . . , p. In M5, X is
uniform with independent entries on the p-dimensional hyper-cube. In M7, X is multivariate t-distributed with 3 degrees
of freedom. The link functions of M4 and M7 are studied in [35], but we use p = 20 instead of 10 and a non identity
covariance structure for M4 and the t-distribution instead of normal for M7. In M2, Z ∼ 2Bernoulli(pmix)−1 ∈ {−1, 1},
where 1q = (1, 1, ..., 1)T ∈ R

q , mixing probability pmix ∈ [0, 1] and dispersion parameter λ > 0. For 0 < pmix < 1, X
has a mixture normal distribution, where pmix is the relative mode height and λ is a measure of mode distance.

We set q = p − k and generate r = 100 replications of models M1 - M7. We estimate B using the ten sufficient

dimension reduction methods. The accuracy of the estimates is assessed using err = ‖PB −P
B̂
‖/
√
2k, which lies in

the interval [0, 1]. The factor
√
2k normalizes the distance, with values closer to zero indicating better agreement and

values closer to one indicating strong disagreement , specifically, ‖PB −P
B̂
‖2 ≤ 2k.

In Table 2 the mean and standard deviation of err for M1 - M7 are reported. In particular, for M2, pmix = 0.3 and
λ = 1. The smallest error values are boldfaced. In models M1, M2 and M3, the conditional variance estimator is
the best performer, with its refined version as close second. In M4, M5 and M6, any of the four versions of MAVE
performs better than the CVE. For model M7 the results of rOPG and rmave are not reported because the code frequently
produces an error message that a matrix is not invertible. Among the rest, the weighted version of CVE, wCVE, attains
the minimum error.
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Sliced inverse regression (SIR) and sliced average variance estimation (SAVE) are not competitive throughout our
experiments. Sliced inverse regression (SIR), in particular, is expected to fail in models M1-M3, and M6 since E(Y | X)
is even.

In Figure 2, box-plots for all combinations of pmix ∈ {0.3, 0.4, 0.5} and λ ∈ {0, 0.5, 1, 1.5} are presented. The reference
methods are restricted to meanOPG and meanMAVE, since the others are not competitive. Conditional variance estimation
performs better than all competing methods and is the only method with consistently smaller errors when the two modes
are further apart (λ ≥ 1) regardless of the mixing probability pmix. The performance of both meanOPG and meanMAVE
worsens as one moves from left to right row-wise. The mixing probability, pmix, has no noticeable effect on the
performance of any method; i.e., the plots are very similar column-wise. In sum, meanMAVE’s performance deteriorates
as the bimodality of the predictor distribution becomes more distinct. In contrast, conditional variance estimation is
unaffected. and appears to have an advantage over meanMAVE when the predictors have mixture distributions, the link
function is even about the midpoint of the two modes, and B is not orthogonal to the line connecting the two modes.
Conditional variance estimation is the only method that estimates the mean subspace reliably in model M2 (err ≈ 0.4
to 0.5), whereas meanMAVE misses it completely (err ≈ 1). These results indicate that conditional variance estimation
is often approximately on par, and can perform much better than meanMAVE depending on the predictor distribution and
the link function.

Table 2: Mean and standard deviation of estimation errors

Model CVE wCVE rCVE meanOPG rOPG meanMAVE rmave pHd sir save

M1
mean 0.3827 0.4414 0.4051 0.6220 0.9876 0.5099 0.9840 0.8278 0.9875 0.9788
sd 0.1269 0.1595 0.1329 0.1879 0.0223 0.1800 0.0295 0.1206 0.0243 0.0334

M2
mean 0.4572 0.4992 0.4658 0.8987 0.9332 0.8905 0.9242 0.9000 0.9783 0.9781
sd 0.1038 0.1524 0.0989 0.0908 0.0683 0.0983 0.0897 0.0735 0.0278 0.0318

M3
mean 0.6282 0.7509 0.6371 0.7847 0.9644 0.7576 0.9674 0.6964 0.9647 0.9519
sd 0.2354 0.2262 0.2181 0.2201 0.0667 0.2435 0.0609 0.1626 0.0587 0.0650

M4
mean 0.5663 0.5897 0.5554 0.4071 0.4026 0.4361 0.3905 0.7772 0.5824 0.9727
sd 0.1239 0.1246 0.1298 0.0814 0.0609 0.0997 0.0584 0.0662 0.0951 0.0202

M5
mean 0.4429 0.5604 0.4779 0.4058 0.3737 0.3929 0.3750 0.7329 0.6374 0.9730
sd 0.0891 0.1233 0.0976 0.1022 0.0680 0.0894 0.0871 0.0832 0.0968 0.0186

M6
mean 0.3828 0.3027 0.3230 0.1827 0.4632 0.1656 0.4863 0.4978 0.9129 0.8236
sd 0.1006 0.0748 0.1098 0.0289 0.1717 0.0252 0.1676 0.0601 0.0420 0.0518

M7
mean 0.6856 0.5050 0.5651 0.5694 NA 0.5482 NA 0.8536 0.8133 0.8699
sd 0.0588 0.0862 0.0879 0.1122 NA 0.1271 NA 0.0354 0.0341 0.0342

Furthermore we estimate the dimension k via cross-validation, following the approach in [35] , with

k̂ = argminl=1,...,p CV (l) = argminl=1,...,p

∑
i(Yi − ĝ−i(B̂T

l Xi))
2

n
, (34)

where ĝ−i(·) is computed from the data (Yj , B̂
T
l Xj)j=1,...,n;j 6=i using multivariate adaptive regression splines [17] in

the R-package mda, and B̂l = V̂⊥
p−l is any basis of the orthogonal complement of V̂p−l = argminV∈S(p,p−l) Ln(V).

For a given l, we calculate B̂l from the whole data set and predict Yi by Ŷi,l = ĝ−i(B̂T
l Xi). For l = p, B̂p = Ip. The

results for the seven models are reported in Table 3. The CVE based dimension estimation is the most accurate in
models M1, M2, M3, and M6 and differs slightly from that of MAVE in M7. MAVE performs better in M4 and M5,
completely misses the true dimension in M2 and misses it most of the time in M3. Thus, the dimension estimation
performance of CVE and MAVE agrees with the estimation accuracy of the true subspace in Table 2, CVE estimates the
dimension more accurately even in model M6, where it exhibits worse subspace estimation performance, and overall
appears to be more accurate.

We carried out many simulation experiments for an array of combinations of link functions, sufficient reduction matrices
B and their ranks, as well as predictor and error distributions. All reported and unreported results indicate that the
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Figure 2: M2, p = 20, n = 100

Table 3: Number of times dimension k is correctly estimated in 100 replications

M1 M2 M3 M4 M5 M6 M7

CVE 83 41 88 62 46 74 19
MAVE 67 0 14 76 60 57 21

difference in performance of the two methods, CVE and mean MAVE, can be attributed to both the form of the link
function and the marginal predictor distribution. We observed that when the link function had a bounded first order
derivative, CVE often outperformed mean MAVE across predictor distributions. In the opposite case, MAVE performed
mostly better. Also, when the predictors have a bimodal distribution with well separated modes and the link function
is even, regardless of whether its derivative is bounded, CVE outperforms mean MAVE. In the other settings for the
generated data, both methods were roughly on par.

6 Real Data Analyses

Three data sets are analyzed: the Hitters data in the R package ISLR, which was also analyzed by [35], the Boston
Housing data in the R package mlbench, and the Concrete data from the MAVE package. The reference method is
meanMAVE from the MAVE package in R and the CVE is calculated using m = 50 and maxit = 10 in the optimization
algorithm 1 in Section 4. The estimation of the dimension is based on (34) in Section 5.

Following [35], we remove 7 outliers from the Hitters data set leading to a sample size of 256. The response is
Y = log(salary) and the 16 continuous predictors are the game statistics of players in the Major League Baseball
league in the seasons 1986 and 1987. Further information can be found in https://www.rdocumentation.org/
packages/ISLR/versions/1.2/topics/Hitters.

The Boston Housing data set contains 506 census tracts on 14 variables from the 1970 census. The response is medv,
the median value of owner-occupied homes in USD 1000’s. The factor variable chas is removed from the data set
for the analysis so that the response is modeled by the remaining 12 continous predictors. The description of the
variables can be found in https://www.rdocumentation.org/packages/mlbench/versions/2.1-1/topics/
BostonHousing.

The Concrete data set contains 1030 instances on 9 continuous variables The response is concrete compressive strength.
Concrete strength is very important in civil engineering and is a highly nonlinear function of age and ingredients. The
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description of the variables can be found in https://www.rdocumentation.org/packages/MAVE/versions/1.
3.10/topics/Concrete.

For all three data sets we standardize both the predictors and the response by subtracting the mean and rescaling
column-wise so that each variable has unit variance. The data sets are analyzed using 10 fold cross-validation to
calculate an unbiased estimate of the prediction error [30] for our method , CVE, and its main competitor meanMAVE
using the MAVE package. The dimension for each method is estimated with (34) on the trainings set and we then fit
a forward regression model on the training set replacing the original with the reduced predictors using multivariate
adaptive regression splines [17] using the R package mda and calculate the prediction error on the test set for both
methods. The dimension estimates of CVE and MAVE mostly disagree.

The mean and standard deviation of the 10-fold cross-validation prediction errors are reported in Table 4. Since the
response is standardized, the values in Table 4 are bounded between 0 and 1, with smaller values indicating better
predictive performance. CVE performs slightly worse than mean MAVE in the Hitters data set, slightly better in the
Boston Housing and better in the Concrete data set analysis.

Table 4: Mean and standard deviation (in parenthesis) of standardized out of sample prediction errors for the three data
sets

Method Hitters Housing Concrete

CVE 0.216 0.260 0.361
(0.101) (0.331) (0.206)

MAVE 0.203 0.299 0.417
(0.083) (0.382) (0.348)

6.1 Hitters Data Analysis as in [35]

Additionally, we reconstruct the analysis of the Hitters data in [35], which does not account for the out-of-sample
prediction error as in Section 6 but uses the whole sample for estimation of B and its rank. Only the dimension k is
estimated with leave-one-out cross validation.

Table 5 reports the average cross validation mean squared errorCV (k) in (34) using the whole data set over k = 1, . . . , 5.
Both conditional variance estimation and mean minimum average variance estimation estimate the dimension to be 2.

Table 5: Mean cross-validation error

k 1 2 3 4 5

CVE 0.308 0.218 0.275 0.327 0.371
MAVE 0.370 0.277 0.339 0.413 0.440

We plot the response against the estimated directions in Figure 3. Both exhibit the same pattern: the response appears to
be linear in one direction and quadratic in the second. The difference is that the linear pattern is clearer in the second
CVE direction and the quadratic pattern exhibits increasing variance in the first MAVE direction.

Based on the scatterplots in Figure 3, we fit the same models for both. For conditional variance estimation, the fitted
regression is

Ŷ = 0.39578 + 0.33724(b̂T
1 X)− 0.08066(b̂T

1 X)2 + 0.29126(b̂T
2 X) (35)

with R2 = 0.7975, and for minimum average variance estimation

Ŷ = 0.39051 + 1.32529(b̂T
1 X)− 0.55328(b̂T

1 X)2 + 0.49546(b̂T
2 X) (36)

with R2 = 0.7859. Both models (35) and (36) have about the same fit as measured by R2. The in sample performance
of the two methods is practically the same for the Hitters data.

7 Discussion

In this paper the novel conditional variance estimator (CVE) for the mean subspace is introduced. We present
its geometrical and theoretical foundation, show its consistency and propose an estimation algorithm with assured

13
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Figure 3: Y against b̂T
1 X and b̂T

2 X

convergence. CVE requires the forward model (1), Y = g(BTX) + ǫ, holds and weak assumptions on the response
and the covariates.

Minimum average variance estimation (MAVE) [35] is the only other sufficient dimension reduction method based on
the forward model (1). It estimates the sufficient dimension reduction targeting both the reduction and the link function
g in (1). CVE targets only the reduction and does not require estimation of the link function, which may explain why
it has an advantage over MAVE in some regression settings. For example, CVE exhibits similar performance across
different link functions (cos, exp, etc) for fixed λ, whereas the performance of MAVE is very uneven for model M2 in
Section 5. CVE is more accurate than MAVE when the link function is even and the predictor distribution is bimodal
throughout our simulation studies. Moreover, CVE does not require the inversion of the predictor covariance matrix and
can be applied to regressions with p ≈ n or p > n.

The theoretical challenge in deriving the statistical properties of conditional variance estimation arises from the novelty
of its definition that involves random non i.i.d. weights that depend on the parameter to be estimated.
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8 Appendix

Justification for (8): Theorem 3.1 of [21] and the fact that (Rp,B(Rp)), where B(Rp) denotes the Borel sets on R
p, is a

Polish space guarantee the existence of the regular conditional probability of X | X ∈ s0 + span{V} [see also [16]].
Further, the measure is concentrated on the affine subspace s0 + span{V} ⊂ R

p and is given by (8) by Definition 8.38
and Theorem 8.39 of [20] and the orthogonal decomposition (5).

Proof of (9): Since X and ǫ in (1) are assumed to be independent, Var(Y | X ∈ s0 + span{V}) = Var(g(BTX) |
X ∈ s0 + span{V}) + Var(ǫ). Using (8) and Var(Y | Z) = E(Y 2 | Z)− E(Y | Z)2, we obtain (9).

We let g̃(V, s0, r) = g(BT s0 +BTVr)lfX(s0 +Vr). The parameter integral (11) is well defined and continuous if
(1) g̃(V, s0, ·) is integrable for all V ∈ S(p, q), s0 ∈ supp(fX), (2) g̃(·, ·, r) is continuous for all r, and (3) there exists
an integrable dominating function of g̃ that does not depend on V and s0 [see [19, p. 101]].

Furthermore t(l)(V, s0) =
∫
K
g̃(V, s0, r)dr for some compact set K, since supp(fX) is compact due to (A.4). The

function g̃(V, s0, r) is continuous in all inputs by the continuity of g and fX by (A.2), and therefore it attains a

maximum. In consequence, all three conditions are satisfied so that t(l)(V, s0) is well defined and continuous.

Next µl(V, s0) = t(l)(V, s0)/t
(0)(V, s0) is continuous since t(0)(V, s0) > 0 for all s0 ∈ supp(fX) by the continuity

of fX and Σx > 0. Then, L̃(V, s0) in (9) is continuous, which results in L(V) also being well defined and continuous
by virtue of it being a parameter integral following the same arguments as above.

Next we establish the consistency of the conditional variance estimator. The uniform convergence in probability of the

sample objective function in (19) is a sufficient condition for obtaining the consistency of V̂q = argminV∈S(p,q) Ln(V),
as uniform convergence in probability of a random function implies convergence in probability of the minimizer of
Ln(V) to the minimizer of the limit function. Let

t(l)n (V, s0) =
1

nh
(p−q)/2
n

n∑

i=1

K

(
di(V, s0)

hn

)
Y l
i (37)

be the sample version of (11) for l = 0, 1, 2. The summands of L̃n in (18) can be expressed as

ȳl(V, s0) =
t
(l)
n (V, s0)

t
(0)
n (V, s0)

, (38)

Before we start with the proof a few auxiliary lemmas are shown.

Lemma 8. Assume (A.4) and (K.1) hold. Let Zn(V, s0) =
(∑

i g(Xi)
lK(di(V, s0)/hn)

)
/(nh

(p−q)/2
n ) for a contin-

uous function g. Then,

E (Zn(V, s0)) =

∫

supp(fX)∩Rp−q

K(‖r2‖2)
∫

supp(fX)∩Rq

g̃(r1, h
1/2
n r2)dr1dr2

where g̃(r1, r2) = g(s0 +Vr1 +Ur2)
lfX(s0 +Vr1 +Ur2), x = s0 +Vr1 +Ur2 in (5).

Proof of Lemma 8. By (5), ‖PU(x− s0)‖2 = ‖Ur2‖2 = ‖r2‖2. Further

E (Zn(V, s0)) =
1

h
(p−q)/2
n

∫

supp(fX)

g(x)lK(‖PU (x− s0)/h
1/2
n ‖2)fX(x)dx

=
1

h
(p−q)/2
n

∫

supp(fX)∩Rp−q

∫

supp(fX)∩Rq

g(s0 +Vr1 +Ur2)
lK(‖r2/h1/2n ‖2)×

fX(s0 +Vr1 +Ur2)dr1dr2

=

∫

supp(fX)∩Rp−q

K(‖r2‖2)
∫

supp(fX)∩Rq

g(s0 +Vr1 + h1/2n Ur2)
l×

fX(s0 +Vr1 + h1/2n Ur2)dr1dr2

where the substitution r̃2 = r2/h
1/2
n , dr2 = h

(p−q)/2
n dr̃2 was used to obtain the last equality.
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Lemma 9. Assume (A.1), (A.2), (A.3), (A.4), (H.1) and (K.1) hold. For all δ > 0 there exist an n⋆ and finite constants

b̃u,m for u ∈ {0, 1, 2, 3, 4} and m ∈ {1, 2} such that

(b̃2l,2 − δ)
nh

(p−q)/2
n

− (b̃l,1)2 + δ

n
≤ Var(t(l)n (V, s0)) ≤

(b̃2l,2 + δ)

nh
(p−q)/2
n

− (b̃l,1)2 − δ
n

for n > n⋆ and t
(l)
n (V, s0), l = 0, 1, 2, in (37).

Proof of Lemma 9. From (1) and the binomial formula, Y l
i = (gi + ǫi)

l =
∑l

u=0

(
l
u

)
gl−u
i ǫui with gi = g(BTXi). For

m ∈ {1, 2} and l ∈ {0, 1, ..., 4}, using the independence of Xi from ǫi, we obtain

E
(
Y l
iK

m(di(V, s0)/hn)
)
=

l∑

u=0

(
l

u

)
E
(
gl−u
i Km(di(V, s0)/hn)

)
E (ǫui ) . (39)

Setting Zn(V, s0) = 1/(nh
(p−q)/2
n )

∑
i g(Xi)

l−uK̃(di(V, s0)/hn) in Lemma 8, where K̃(z) = Km(z) fulfills (K.1)

for m = 1, 2, we obtain E
(
gl−u
i Km(di(V, s0)/hn)

)
= h

(p−q)/2
n E(Zn). That is, if a kernel satisfies (K.1) its square

also satisfies (K.1). Since the integrals are over compact sets by (A.4), by the dominated convergence theorem and
Lemma 8, it holds

E(Zn) =

∫

supp(fX)∩Rp−q

K̃(‖r2‖2)
∫

supp(fX)∩Rq

g̃(r1, h
1/2
n r2)dr1dr2 = bl−u,m

n (40)

−−−−→
n→∞

bl−u,m =

∫

supp(fX)∩Rp−q

K̃(‖r2‖2)dr2
∫

supp(fX)∩Rq

g̃(r1, 0)dr1 (41)

using that g̃(r1, r2) = g(BT s0 +BTVr1 +BTUr2)
l−ufX(s0 +Vr1 +Ur2) is continuous by (A.2) and hn → 0 by

assumption (H.1).

Assumption (A.3) implies E(ǫ4i ) <∞ for i = 1, . . . , n. From (40) and (39), we obtain

E

(
Y l
iK

m(di(V, s0)/hn)/h
(p−q)/2
n

)
=

l∑

u=0

(
l

u

)
bl−u,m
n E (ǫui ) = b̃l,mn (42)

−−−−→
n→∞

l∑

u=0

(
l

u

)
bl−k,m

E (ǫui ) = b̃l,m <∞

By (42), we have for l = 0, 1, 2

Var
(
t(l)n (V, s0)

)
=

1

nhp−q
n

Var
(
Y l
1K(d1(V, s0)/hn)

)
=

b̃2l,2n

nh
(p−q)/2
n

− (b̃l,1n )2

n

since (Yi,X
T
i )i=1,...,n are independent draws from the joint distribution of (Y,X). This completes the proof since

b̃u,mn → b̃u,m <∞ for u ∈ {0, 1, ..., 4} and m ∈ {1, 2}.

Next we show that di(V, s0) in (16) is Lipschitz in its inputs under assumption (A.4) in Lemma 10.

Lemma 10. Under assumption (A.4) there exists a constant 0 < C2 <∞ such that for all δ > 0 and V,Vj ∈ S(p, q)
with ‖PV −PVj

‖ < δ and for all s0, sj ∈ supp(fX) ⊂ R
p with ‖s0 − sj‖ < δ

|di(V, s0)− di(Vj , sj)| ≤ C2δ

for di(V, s0) given by (16)

Proof of Lemma 10.

|di(V, s0)− di(Vj , sj)| ≤
∣∣‖Xi − s0‖2 − ‖Xi − sj‖2

∣∣+
∣∣〈Xi − s0,PV(Xi − s0)〉 − 〈Xi − sj ,PVj (Xi − sj)〉

∣∣ = I1 + I2 (43)

where 〈·, ·〉 is the scalar product on R
p. For the first term on the right hand side of (43)

I1 =
∣∣‖Xi − s0‖2 − ‖Xi − sj‖2

∣∣ ≤ 2 |〈Xi, s0 − sj〉|+
∣∣‖s0‖2 − ‖sj‖2

∣∣
≤ 2‖Xi‖‖s0 − sj‖+ 2C1‖s0 − sj‖ ≤ 2C1δ + 2C1δ = 4C1δ
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by Cauchy-Schwartz and the reverse triangular inequality (i.e.
∣∣‖s0‖2 − ‖sj‖2

∣∣ = |‖s0‖ − ‖sj‖| (‖s0‖ + ‖sj‖) ≤
‖s0 − sj‖2C1) and ‖Xi‖ ≤ supz∈supp(fX) ‖z‖ = C1 < ∞ with probability 1 due to (A.4). The second term in (43)

satisfies

I2 ≤
∣∣〈Xi, (PV −PVj )Xi〉

∣∣+ 2
∣∣〈Xi,PVs0 −PVjsj〉

∣∣+
∣∣〈s0,PVs0〉 − 〈sj ,PVjsj〉

∣∣

≤ ‖Xi‖2‖PV −PVj‖+ 2‖Xi‖
∥∥PV(s0 − sj) + (PV −PVj )sj

∥∥+ |〈s0 − sj ,PVs0〉|+∣∣〈sj ,PVs0 −PVj
sj〉
∣∣ ≤ C2

1δ + 2C1(δ + C1δ) + C1δ + C1(δ + C1δ) = 4C1δ + 4C2
1δ

Collecting all constants into C2 (i.e. C2 = 8C1 + 4C2
1 ) yields the result.

The proofs of Theorems 3 and 11 require the Bernstein inequality [3]: Let Z1, Z2, ... be an independent sequence of
bounded random variables |Zi| ≤ b. Let Sn =

∑n
i=1 Zi, En = E(Sn) and Vn = Var(Sn). Then,

P (|Sn − En| > t) < 2 exp

(
− t2/2

Vn + bt/3

)
(44)

Furthermore the proof of Theorem 11 requires assumption (K.2), which obtains

|K(u)−K(u′)| ≤ K∗(u′)δ (45)

for all u, u′ with |u− u′| < δ ≤ L2 and K∗(·) is a bounded and integrable kernel function [see [18]]. Specifically, if
condition (1) of (K.2) holds, then K∗(u) = L11{|u|≤2L2}. If (2) holds, then K∗(u) = L11{|u|≤2L2} + 1{|u|>2L2}|u−
L2|−ν .

Let A = S(p, q)× supp(fX) and by a slight abuse of notation, we generically denote constants by C. In Theorems 11
and 12 we show that the variance and bias terms of (37) vanish uniformly in probability, respectively.

Theorem 11. Under (A.1), (A.2), (A.3), (A.4), (K.1), (K.2), a2n = log(n)/nh
(p−q)/2
n = o(1) and an/h

(p−q)/2
n = O(1),

sup
V×s0∈A

∣∣∣t(l)n (V, s0)− E

(
t(l)n (V, s0)

)∣∣∣ = OP (an) for l = 0, 1, 2 (46)

Remark. If we assume |Y | < M2 <∞ almost surely, the requirement an/h
(p−q)/2
n = O(1) for the bandwidth can be

dropped and the truncation step of the proof of Theorem 11 can be skipped.

Proof of Theorem 11. The proof is organized in 3 steps: a truncation step, a discretization step by covering A =
S(p, q)× supp(fX), and application of Bernstein’s inequality (44).

We let τn = a−1
n and truncate Y l

i by τn as follows. We let

t
(l)
n,trc(V, s0) = (1/nh(p−q)/2

n )
∑

i

K(‖PU(Xi − s0)‖2/hn)Y l
i 1{|Yi|l≤τn} (47)

be the truncated version of (37) and R̃
(l)
n = (1/nh

(p−q)/2
n )

∑
i |Yi|l1{|Yi|l>τn} be the remainder of (37). Therefore

R
(l)
n (V, s0) = t

(l)
n (V, s0)− t(l)n,trc(V, s0) ≤M1R̃

(l)
n due to (K.1) and

sup
V×s0∈A

∣∣∣t(l)n (V, s0)− E

(
t(l)n (V, s0)

)∣∣∣ ≤M1(R̃
(l)
n + ER̃(l)

n )

+ sup
V×s0∈A

∣∣∣t(l)n,trc(V, s0)− E

(
t
(l)
n,trc(V, s0)

)∣∣∣ (48)

By Cauchy-Schwartz and the Markov inequality, P(|Z| > t) = P(Z4 > t4) ≤ E(Z4)/t4, we obtain

ER̃(l)
n =

1

h
(p−q)/2
n

E
(
|Yi|l1{|Yi|l>τn}

)
≤ 1

h
(p−q)/2
n

√
E(|Yi|2l)

√
P(|Yi|l > τn)

≤ 1

h
(p−q)/2
n

√
E(|Yi|2l)

(
E(|Yi|4l)
a−4
n

)1/2

= o(an) (49)

where the last equality uses the assumption an/h
(p−q)/2
n = O(1) and the expectations are finite due to (A.3) for

l = 0, 1, 2. Obviously, no truncation is needed for l = 0.
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Therefore the first two terms of the right hand side of (48) converge to 0 with rate an by (49) and Markov’s inequality.
From now to the end of the proof Yi will denote the truncated version Yi1{|Yi|≤τn} and we do not distinguish the

truncated from the untruncated tn(V, s0) since this truncation results in an error of magnitude an.

For the discretization step we cover the compact setA = S(p, q)×supp(fX) by finitely many balls, which is possible by
(A.4) and the compactness of S(p, q). Let δn = anhn and Aj = {V : ‖PV−PVj

‖ ≤ δn}×{s : ‖s− sj‖ ≤ δn} be a

cover of A with ball centers Vj × sj . Then, A ⊂ ⋃N
j=1Aj and the number of balls can be bounded by N ≤ C δ−d

n δ−p
n

for some constant C ∈ (0,∞), where d = dim(S(p, q)) = pq − q(q + 1)/2. Let V × s0 ∈ Aj . Then by Lemma 10
there exists 0 < C2 <∞, such that

|di(V, s0)− di(Vj , sj)| ≤ C2δn (50)

holds for di in (16). Under (K.2), which implies (45), inequality (50) yields
∣∣∣∣K
(
di(V, s0)

hn

)
−K

(
di(Vj , sj)

hn

)∣∣∣∣ ≤ K
∗

(
di(Vj , sj)

hn

)
C2an (51)

for V × s0 ∈ Aj and K∗(·) an integrable and bounded function.

Define r
(l)
n (Vj , sj) = (1/nh

(p−q)/2
n )

∑n
i=1K

∗(di(Vj , sj)/hn)|Yi|l. For notational convenience we drop the depen-
dence on l and j in the following and observe that (51) yields

|t(l)n (V, s0)− t(l)n (Vj , sj)| ≤ C2anr
(l)
n (Vj , sj) (52)

Since K∗ fulfills (K.1) except for continuity, an analogous argument as in the proof of Lemma 8 yields that

E

(
r
(l)
n (Vj , sj)

)
< ∞ by (A.3). By subtracting and adding t

(l)
n (Vj , sj), E(t

(l)
n (Vj , sj)), the triangular inequal-

ity, (52) and integrability of rln, we obtain
∣∣∣t(l)n (V, s0)− E

(
t(l)n (V, s0)

)∣∣∣ ≤
∣∣∣t(l)n (V, s0)− t(l)n (Vj , sj)

∣∣∣+
∣∣∣E
(
t(l)n (Vj , sj)− t(l)n (V, s0)

)∣∣∣

+
∣∣∣t(l)n (Vj , sj)− E

(
t(l)n (Vj , sj)

)∣∣∣ ≤ C2an (|rn|+ |E (rn) |) +
∣∣∣t(l)n (Vj , sj)− E

(
t(l)n (Vj , sj)

)∣∣∣

≤ C2an(|rn − E(rn)|+ 2|E(rn)|) +
∣∣∣t(l)n (Vj , sj)− E

(
t(l)n (Vj , sj)

)∣∣∣

≤ 2C3an + |rn − E(rn)|+
∣∣∣t(l)n (Vj , sj)− E

(
t(l)n (Vj , sj)

)∣∣∣ (53)

for any C3 > C2E(r
(l)
n (Vj , sj)) and n such that an ≤ 1, since a2n = o(1). Summarizing there exists 0 < C3 < ∞

such that (53) holds.

Then using supx∈A f(x) = max1≤j≤N supx∈Aj
f(x) ≤∑N

j=1 supx∈Aj
f(x) for any partition of A and continuous

function f , subadditivty of the probability for the first inequality and (53) for the third inequality below, it holds

P( sup
V×s0∈A

|t(l)n (V, s0)− E

(
t(l)n (V, s0)

)
| > 3C3an) (54)

≤
N∑

j=1

P( sup
V×s0∈Aj

|t(l)n (V, s0)− E

(
t(l)n (V, s0)

)
| > 3C3an)

≤ N max
1≤j≤N

P( sup
V×s0∈Aj

|t(l)n (V, s0)− E

(
t(l)n (V, s0)

)
| > 3C3an)

≤ N
(

max
1≤j≤N

P(|t(l)n (Vj , sj)− E

(
t(l)n (Vj , sj)

)
| > C3an) + max

1≤j≤N
P(|rn − E(rn)| > C3an)

)
≤

C δ−(d+p)

(
max

1≤j≤N
P(|t(l)n (Vj , sj)− E

(
t(l)n (Vj , sj)

)
| > C3an) + max

1≤j≤N
P(|rn − E(rn)| > C3an)

)

where the last inequality is due to N ≤ C δ−d
n δ−p

n for a cover of A.

Finally, we bound the first and second term in the last line of (54) by the Bernstein inequality (44). For the first term

in the last line of (54), let Zi = Y l
iK(di(Vj , sj)/hn) and Sn =

∑
i Zi = nh

(p−q)/2
n t

(l)
n (Vj , sj), then the Zi are

independent, |Zi| ≤ b =M1τn =M1/an by (K.1) and the truncation step. For Vn = Var(Sn), Lemma 9 yields

nh(p−q)/2
n

(
b̃2l,2 − δ − h(p−q)/2

n

(
(b̃l,1)2 + δ

))
≤ Vn ≤ nh(p−q)/2

n

(
b̃2l,2 + δ − h(p−q)/2

n

(
(b̃l,1)2 − δ

))
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for n sufficiently large. We write nh
(p−q)/2
n C ≥ Vn with C = b̃2l,2 + δ, and set t = C3annh

(p−q)/2
n . The Bernstein

inequality (44) yields

P

(∣∣∣t(l)n (Vj , sj)− E

(
t(l)n (Vj , sj)

)∣∣∣ > C3an

)
< 2 exp

( −t2/2
Vn + bt/3

)
≤

2 exp

(
− (1/2)C2

3a
2
nn

2h
(p−q)
n

nh
(p−q)/2
n C + (1/3)M1τnC3annh

(p−q)/2
n )

)
≤ 2 exp

(
− (1/2)C3 log(n)

C/C3 + (M1/3)

)
= 2n−γ(C3)

where a2n = log(n)/(nh
(p−q)/2
n ) and define γ(C3) =

(1/2)C3

C/C3+(M1/3)
, which is an increasing function that can be made

arbitrarily large by increasing C3.

For the second term in the last line of (54), set Zi = Y l
iK

∗(di(Vj , sj)/hn) in the Bernstein inequality (44) and proceed
analogously to obtain

P

(∣∣∣r(l)n (Vj , sj)− E

(
r(l)n (Vj , sj)

)∣∣∣ > C3an

)
< 2n

−
(1/2)C3

C/C3+(1/3)M2 = 2n−γ(C3)

By (H.1), h
(p−q)/2
n ≤ 1 for n large, so that δ−1

n = (anhn)
−1 ≤ n1/2h−1

n h
(p−q)/4
n ≤ n5/2. Further (H.2) implies

1/(nh
(p−q)/2
n ) ≤ 1 for n large, therefore h−1

n ≤ n2/(p−q) ≤ n2 since p − q ≥ 1. Therefore, (54) is smaller

than 4C δ
−(d+p)
n n−γ(C3) ≤ 4Cn5(d+p)/2−γ(C3). For C3 large enough, we have 5(d + p)/2 − γ(C3) < 0 and

n5(d+p)/2−γ(C3) → 0. This completes the proof.

Theorem 12. Under (A.1), (A.2) and (A.4), (H.1), (K.1), and
∫
Rp−q K(‖r2‖2)dr2 = 1,

sup
V×s0∈A

∣∣∣t(l)(V, s0) + 1{l=2}η
2t(0)(V, s0)− E

(
t(l)n (V, s0)

)∣∣∣ = O(hn), l = 0, 1, 2 (55)

Proof of Theorem 12. Let g̃(r1, r2) = g(BT s0 +BTVr1 +BTUr2)
lfX(s0 +Vr1 +Ur2) where r1, r2 satisfy the

orthogonal decomposition (5). Then

E

(
t(l)n (V, s0)

)
=

∫

Rp−q

K(‖r2‖2)
∫

Rp

g̃(r1, hn
1/2r2)dr1dr2 + 1{l=2}η

2
E

(
t(0)n (V, s0)

)
(56)

holds by Lemma 8 for l = 0, 1. For l = 2, Y 2
i = g2i + 2giǫi + ǫ2i with gi = g(BTXi) and can be handled as in the

case of l = 0, 1.

Plugging in (56) the second order Taylor expansion for some ξ in the neighborhood of 0, g̃(r1, hn
1/2r2) = g̃(r1, 0) +

hn
1/2∇r2 g̃(r1, 0)

T r2 + hnr
T
2∇2

r2
g̃(r1, ξ)r2, yields

E

(
t(l)n (V, s0)

)
=

∫

Rq

g̃(r1, 0)dr1 +
√
hn

(∫

Rq

∇r2 g̃(r1, 0)dr1

)T ∫

Rp−q

K(‖r2‖2)r2dr2+

hn
1

2

∫

Rp−q

K(‖r2‖2)
∫

Rp

rT2∇2
r2
g̃(r1, ξ)r2dr1dr2 = t(l)(V, s0) + hn

1

2
R(V, s0)

since
∫
Rq g̃(r1, 0)dr1 = t(l)(V, s0) and

∫
Rp−q K(‖r2‖2)r2dr2 = 0 ∈ R

p−q due to K(‖ · ‖2) being even. Let

R(V, s0) =
∫
Rp−q K(‖r2‖2)

∫
Rp r

T
2∇2

r2
g̃(r1, ξ)r2dr1dr2. By (A.4) and (A.2) it holds |rT2∇2

r2
g̃(r1, ξ)r2| ≤ C‖r2‖2

for C = supx,y ‖∇2
r2
g̃(x,y)‖ < ∞, since a continuous function over a compact set is bounded. Then, R(V, s0) ≤

CC4

∫
Rp−q K(‖r2‖2)‖r2‖2dr2 <∞ for some C4 > 0 since the integral over r1 is over a compact set by (A.4).

Lemma 13 follows directly from Theorems 11 and 12 and the triangle inequality.

Lemma 13. Suppose (A.1), (A.2), (A.3), (A.4), (K.1), (K.2), (H.1) hold. If a2n = log(n)/nh
(p−q)/2
n = o(1), and

an/h
(p−q)/2
n = O(1), then for l = 0, 1, 2

sup
V×s0∈A

∣∣∣t(l)(V, s0) + 1{l=2}η
2t(0)(V, s0)− t(l)n (V, s0)

∣∣∣ = OP (an + hn)

Combining the results of Theorems 11 and 12 and Lemma 13 obtains Theorem 14.
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Theorem 14. Suppose (A.1), (A.2), (A.3), (A.4), (K.1), (K.2), (H.1) hold. Let a2n = log(n)/nh
(p−q)/2
n = o(1),

an/h
(p−q)/2
n = O(1), δn = infV×s0∈An t

(0)(V, s0), where t(0)(V, s0) is defined in (11), andandAn = S(p, q)×{x ∈
supp(fX) : |x− ∂supp(fX)| ≥ bn}, where ∂C denotes the boundary of the set C and |x−C| = infr∈C |x− r|, for a
sequence bn → 0 so that δ−1

n (an + hn)→ 0 for any bandwidth hn that satisfies the assumptions. Then,

sup
V×s0∈A

∣∣∣ȳl(V, s0)− µl(V, s0)− 1{l=2}η
2t(0)(V, s0)

∣∣∣ = OP (δ
−1
n (an + hn)), l = 0, 1, 2

and

sup
V×s0∈A

∣∣∣L̃n(V, s0)− L̃(V, s0)
∣∣∣ = OP (δ

−1
n (an + hn)) (57)

where ȳl(V, s0), µl(V, s0), L̃n(V, s0) and L̃(V, s0) are defined in (38), (10), (18) and (9), respectively.

Proof of Theorem 14.

ȳl(V, s0) =
t
(l)
n (V, s0)

t
(0)
n (V, s0)

=
t
(l)
n (V, s0)/t

(0)(V, s0)

t
(0)
n (V, s0)/t(0)(V, s0)

We consider the numerator and enumerator separately. By Lemma 13

sup
V×s0∈An

∣∣∣∣∣
t
(0)
n (V, s0)

t(0)(V, s0)
− 1

∣∣∣∣∣ ≤
supA |t

(0)
n (V, s0)− t(0)(V, s0)|
infAn t

(0)(V, s0)
= OP (δ

−1
n (an + hn))

Next

sup
V×s0∈An

∣∣∣∣∣
t
(l)
n (V, s0)

t(0)(V, s0)
− µl(V, s0)

∣∣∣∣∣ ≤
supA |t

(l)
n (V, s0)− t(l)(V, s0)|
infAn t

(0)(V, s0)
= OP (δ

−1
n (an + hn)).

Therefore by An ↑ A = S(p, q)× supp(fX) we get

lim
n→∞

sup
V×s0∈An

∣∣∣∣∣
t
(l)
n (V, s0)

t(0)(V, s0)
− µl(V, s0)

∣∣∣∣∣ = lim
n→∞

sup
V×s0∈A

∣∣∣∣∣
t
(l)
n (V, s0)

t(0)(V, s0)
− µl(V, s0)

∣∣∣∣∣

and in total we obtain

ȳl(V, s0) =
t
(l)
n (V, s0)/t

(0)(V, s0)

t
(0)
n (V, s0)/t(0)(V, s0)

=
µl +OP (δ

−1
n (an + hn))

1 +OP (δ
−1
n (an + hn))

= µl +OP (δ
−1
n (an + hn)).

For l = 2, Y 2
i = g(BTXi)

2 + 2g(BTXi)ǫi + ǫ2i , and (57) follows from (9).

Lemma 15. Under (A.1), (A.2), (A.4), there exists 0 < C5 <∞ such that

|µl(V, s0)− µl(Vj , s0)| ≤ C5‖PV −PVj‖ (58)

for all s0 ∈ supp(fX)

Proof. From the representation t̃(l)(PV, s0) in (14) instead of t(l)(V, s0), we consider µl(V, s0) = µl(PV, s0) as a
function on the Grassmann manifold. Then,

∣∣µl(PV, s0)− µl(PVj
, s0)

∣∣ =
∣∣∣∣∣
t̃(l)(PV, s0)

t̃(0)(PV, s0)
− t̃(l)(PVj

, s0)

t̃(0)(PVj
, s0)

∣∣∣∣∣

≤ sup |t̃(0)(PV, s0)|
(inf t̃(0)(PV, s0))2

∣∣∣t̃(l)(PV, s0)− t̃(l)(PVj , s0)
∣∣∣

+
sup t̃(l)(PV, s0)

(inf t̃(0)(PV, s0))2

∣∣∣t̃(0)(PV, s0)− t̃(0)(PVj
, s0)

∣∣∣ (59)

with supPV∈Gr(p,q) t̃
(0)(PV, s0) ∈ (0,∞) and infPV∈Gr(p,q) t̃

(0)(PV, s0) ∈ (0,∞) since t̃(l) is continuous, Σx > 0

and s0 ∈ supp(fX).
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By (A.2), g̃(x) = g(BTx)fX(x) is twice continuous differentiable and therefore Lipschitz continuous on compact sets.
We denote its Lipschitz constant by L <∞. Therefore,

∣∣∣t̃(l)(PV, s0)− t̃(l)(PVj , s0)
∣∣∣ ≤

∫

supp(fX)

∣∣g̃(s0 +PVr)− g̃(s0 +PVjr)
∣∣ dr

≤ L
∫

supp(fX)

‖(PV −PVj
)r‖dr ≤ L

(∫

supp(fX)

‖r‖dr
)
‖PV −PVj

‖ (60)

where the last inequality is due to the sub-multiplicativity of the Frobenius norm and the integral being finite by (A.4).
Plugging (60) in (59) and collecting all constants into C5 yields (58).

Proof of Theorem 3. By (19) and (7),

|Ln(V)− L(V)| ≤
∣∣∣∣∣
1

n

∑

i

(
L̃n(V,Xi)− L̃(V,Xi)

)∣∣∣∣∣+
∣∣∣∣∣
1

n

∑

i

(
L̃(V,Xi)− E(L̃(V,X))

)∣∣∣∣∣ (61)

The first term on the right hand side of (61) goes to 0 in probability uniformly in V by Theorem 14,∣∣∣∣∣
1

n

∑

i

L̃n(V,Xi)− L̃(V,Xi)

∣∣∣∣∣ ≤ sup
V×s0∈A

∣∣∣L̃n(V, s0)− L̃(V, s0)
∣∣∣ = OP (δ

−1
n (an + hn)) (62)

The second term in (61) converges to 0 almost surely for all V ∈ S(p, q) by the strong law of large numbers. In order
to show uniform convergence the same technique as in the proof of Theorem 11 is used. Let Bj = {V ∈ S(p, q) :
‖VVT −VjV

T
j ‖ ≤ ãn} be a cover of S(p, q) ⊂ ⋃N

j=1Bj with N ≤ C ã−d
n = C (n/ log(n))d/2 ≤ C nd/2, where

d = dim(S(p, q)) is defined in the proof of Theorem 11. By Lemma 15,

|µl(V,Xi)− µl(Vj ,Xi)| ≤ C5‖PV −PVj‖ (63)

Let Gn(V) =
∑

i L̃(V,Xi)/n with E(Gn(V )) = L(V). Using (63) and following the same steps as in the proof of
Theorem 11 we obtain

|Gn(V)− L(V)| ≤ |Gn(V)−Gn(Vj)|+ |Gn(Vj)− L(Vj)|+ |L(V)− L(Vj)|
≤ 2C6ãn + |Gn(Vj)− L(Vj)| (64)

for V ∈ Bj and some C6 > C5. Inequality (64) leads to

P

(
sup

V∈S(p,q)

|Gn(V)− L(V)| > 3C6ãn

)
≤ C N P( sup

V∈Bj

|Gn(V)− L(V)| > 3C6ãn)

≤ C nd/2
P(|Gn(Vj)− L(Vj)| > C6ãn) ≤ C nd/2n−γ(C6) → 0 (65)

where the last inequality in (65) is due to the Bernstein inequality (44) with Zi = L̃(Vj ,Xi), which is bounded

since L̃(·, ·) is continuous on the compact set A, and γ(C6) a monotone increasing function of C6 that can be made
arbitrarily large by choosingC6 accordingly. Therefore, supV∈S(p,q) |Ln(V)− L(V)| ≤ OP (δ

−1
n (an+hn)+ãn) with

δn = infV×s0∈An
t(0)(V, s0), where t(0)(V, s0) is defined in (11), andAn = S(p, q)×{x ∈ supp(fX) : fX(x) ≥ bn}

for a sequence bn → 0 so that δ−1
n (an + hn)→ 0 for any bandwidth hn that satisfies the assumptions, which implies

(20).

Proof of Theorem 4. We apply Theorem 4.1.1 of [2] to obtain consistency of the conditional variance estimator. This
theorem requires three conditions that guarantee the convergence of the minimizer of a sequence of random functions
Ln(PV) to the minimizer of the limiting function L(PV); i.e., Pspan{B̂}⊥ = argminLn(PV) → Pspan{B}⊥ =

argminL(PV) in probability. To apply the theorem three conditions have to be met: (1) The parameter space is
compact; (2) Ln(V) is continuous and a measurable function of the data (Yi,X

T
i )i=1,...,n and (3) Ln(V) converges

uniformly to L(V) and L(V) attains a unique global minimum at span{B}⊥.

Since Ln(V) depends on V only through PV = VVT , Ln(V) can be considered as functions on the Grassmann
manifold, which is compact, and the same holds true for L(V) by (14). Further, Ln(V) is by definition a measurable
function of the data and continuous in V if a continuous kernel is used, such as the Gaussian. Theorem 3 obtains
the uniform convergence and Theorem 1 that the minimizer is unique when L(V) is minimized over the Grassmann

manifold G(p, q), since span{B} is uniquely identifiable and so is span{B}⊥ (i.e. ‖Pspan{B̂} − Pspan{B}‖ =

‖B̂B̂T −BBT ‖ = ‖(Ip −BBT )− (Ip − B̂B̂T )‖ = ‖Pspan{B̂}⊥ −Pspan{B}⊥‖). Thus, all three conditions are met

and the result is obtained.
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Proof of Theorem 6. The Gaussian kernel K satisfies ∂zK(z) = −zK(z). From (17) and (18) we have

L̃n = ȳ2 − ȳ21 where ȳl =
∑

i wiY
l
i , l = 1, 2. We let Kj = K(dj(V, s0)/hn), suppress the de-

pendence on V and s0 and write wi = Ki/
∑

j Kj . Then, ∇Ki = (−1/h2n)Kidi∇di and ∇wi =

−
(
Kidi∇di(

∑
j Kj)−Ki

∑
j Kjdj∇dj

)
/(hn

∑
j Kj)

2. Next,

∇ȳl = −
1

h2n

∑

i

Y l
i

(
Kidi∇di −Ki(

∑
j Kjdj∇dj)

)

(
∑

j Kj)2
= − 1

h2n

∑

i

Y l
i wi


di∇di −

∑

j

wjdj∇dj




= − 1

h2n


∑

i

Y l
i widi∇di −

∑

j

Y l
jwj

∑

i

widi∇di


 = − 1

h2n

∑

i

(Y l
i − ȳl)widi∇di (66)

Then, ∇L̃n = ∇ȳ2 − 2ȳ1∇ȳ1, and inserting ∇ȳl from (66) yields ∇L̃n = (−1/h2n)
∑

i(Y
2
i − ȳ2 − 2ȳ1(Yi −

ȳ1))widi∇di = (1/h2n)(
∑

i

(
L̃n − (Yi − ȳ1)2

)
widi∇di), since Y 2

i − ȳ2 − 2ȳ1(Yi − ȳ1) = (Yi − ȳ1)2 − L̃n.
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