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Conditional Variance Estimation (CVE) is a novel sufficient
dimension reduction (SDR) method for regressions satisfy-
ing Å(Y |X) = Å(Y |B>X), where B>X is a lower dimensional
projection of the predictors. CVE, similarly to its main com-
petitor, the mean average variance estimation (MAVE), is
not based on inverse regression, and does not require the
restrictive linearity and constant variance conditions of mo-
ment based SDRmethods.CVE is data-driven and applies to
additive error regressions with continuous predictors and
link function. The effectiveness and accuracy of CVE com-
pared to MAVE and other SDR techniques is demonstrated
in simulation studies. CVE is shown to outperform MAVE
in some model settings, while it remains on par under most
others.
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1 | INTRODUCTION

Suppose (Y ,X>)> have a joint continuous distribution, where Y ∈ R denotes a univariate response and X ∈ Rp a
p-dimensional covariate vector. We assume that the dependence ofY and X is modelled by

Y = g (B>X) + ε, (1)

where X is independent of ε with positive definite variance-covariance matrix, Öar(X) = Σx, ε ∈ Ò is a mean zero ran-
domvariablewith finite Öar(ε) = Å

(
ε2

)
= η2, g is an unknown continuous non-constant function, andB = (b1, ..., bk ) ∈

Òp×k of rank k ≤ p . Model (1) states that

Å(Y |X) = Å(Y |B>X) (2)

and requires the first conditional moment Å(Y |X) = g (B>X) contain the entirety of the information in X about Y
and be captured by B>X, so that F (Y |X) = F (Y |B>X), where F (· | ·) denotes the conditional cumulative distribution
function (cdf) of the first given the second argument. That is, Y is statistically independent of X when B>X is given
and replacing X by B>X induces no loss of information for the regression ofY on X.

Identifying the span of B, as only the span{B} is identifiable, suffices in order to identify the sufficient reduction of
X for the regression ofY on X. We assume B is semi-orthogonal; i.e., B>B = Ik , since a change of coordinate system
by an orthogonal transformation does not alter model (2).

Finding sufficient reductions of the predictors to replace them in regression and classification without loss of
information is called sufficient dimension reduction (SDR) Cook (1998). The first split in SDR taxonomy occurs between
likelihood and non-likelihood based methods. The former, which were developed more recently (Cook, 2007; Cook
and Forzani, 2008, 2009; Bura and Forzani, 2015; Bura et al., 2016), assume knowledge either of the joint family of
distributions of (Y ,X>)>, or the conditional family of distributions for X |Y . The latter is the most researched branch
of SDR and comprises of three classes of methods: Inverse regression based, semi-parametric and nonparametric.
Reviews of the former two classes can be found in Adragni and Cook (2009); Ma and Zhu (2013); Li (2018).

In this paper we present the conditional variance estimation (CVE). CVE falls in the class of nonparametric methods.
The estimators in this class minimise a criterion that describes the fit of the dimension reduction model (2) under
(1) to the observed data. Since the criterion involves unknown distributions or regression functions, nonparametric
estimation is used to recover span{B}. Statistical approaches to identify B in (2) include ordinary least squares and
nonparametric multiple index models. The OLS estimator, Σ−1x cov(X,Y ), always falls in span{B} [see Theorem 8.3, Li
(2018)]. Principal Hessian Directions (pHd, Li (1992)) was the first SDR estimator to target span{B} in (2). Its main
disadvantage is that it requires the so called linearity and constant variance conditions on the marginal distribution of
X. Its relaxation, Iterative Hessian Transformation (Cook and Li, 2004), still requires the linearity condition in order to
recover vectors in span(B).

The most competitive nonparametric SDR method up to now has been the minimum average variance estimation
method (MAVE, Xia et al. (2002)). MAVE assumes model (1), bounded fourth derivative covariate density, and exis-
tence of continuous bounded third derivatives for g . It is based on a local first order approximation of g in (1) and the
minimisation of the expected conditional variance of the response given B>X.

The conditional variance estimator (CVE) also targets and recovers span{B} in models (1) and (2). The objective
function is based on the intuition that the directions in the predictor space that capture the dependence of Y on X
should exhibit significantly higher variation inY as compared with the directions along whichY exhibits markedly less
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variation. CVE is a fully data-driven estimator that performs better or on par with MAVE in simulations. Furthermore,
in contrast to MAVE, CVE does not estimate the link function g and requires weaker assumptions on its smoothness.

The rest of the paper is organised as follows. In Section 2 we define the proposed conditional variance estimator
(CVE) and provide its geometrical motivation. Section 3 proposes the relevant estimators. The estimation optimization
algorithm is given in Section 4. Statistical properties of the estimators are obtained in Section 5. Simulation studies
are carried out in Section 6 and the Hitters data set is analysed in Section 7. We conclude in Section 8.

2 | MOTIVATION

Let (Ω, F, P ) be a probability space, andX : Ω → Òp be a random vector with a continuous probability density function
fX and denote its support by supp(fX). In the sequel, we refer to the following assumptions as needed.

Assumption A.1. Model (1) holds with g : Òk → Ò non constant in all arguments, X stochastically independent from ε,
Å(ε) = 0, Öar(ε) = η2 < ∞, and Σx is positive definite.

Assumption A.2. The link function g is continuous and fX is continuous.

Assumption A.3. Å( |Y |4) < ∞.

Assumption A.4. supp(fX) is compact.

Assumption A.5. |Y | < M2 < ∞ almost surely.

The set

S (p, q ) = {V ∈ Òp×q : V>V = Iq }, (3)

denotes a Stiefel manifold that comprises of all p × q matrices with orthonormal columns. S (p, q ) is compact and
dim(S (p, q )) = pq − q (q + 1)/2 [see W.M.Boothby (2002) and Section 2.1 of Tagare (2011)]. For q ≤ p ∈ Î and any
V ∈ S (p, q ), we define

L̃(V, s0) = Öar(Y |X ∈ s0 + span{V}) (4)

where s0 ∈ Òp is a shifting point. Since X has a continuous distribution, the set {ω ∈ Ω : X(ω) ∈ s0 + span{V}} has
probability 0 if q < p . Let

fX|X∈s0+span{V}(x) =


fX(s0+Vr1)∫
Òq fX(s0+Vr)d r

if x ∈ s0 + span{V}, r1 = V>(x − s0)

0 otherwise
(5)

Theorem 1 establishes that (5) is a proper density and that L̃(V, s0) in (4), and its generalised version,

L(V) =
∫
Òp
L̃(V, x)fX(x)dx = Å

(
L̃(V,X)

)
, (6)

are well-defined using the concept of regular conditional probability (Leao Jr and et al., 2004). Moreover, Theorem 1
provides its formula.
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Theorem 1. Let X be a p-dimensional continuous random vector with density fX(x). Under assumption A.2, for s0 ∈
supp(fX) ⊂ Òp and V ∈ S (p, q ) defined in (3), (5) is a proper density. Under assumptions A.1, A.2 and A.4, (4) and (6)
are well defined and continuous for V ∈ S (p, q ) and s0 ∈ supp(fX). Moreover,

L̃(V, s0) = µ2(V, s0) − µ1(V, s0)2 + η2 (7)

where

µl (V, s0) =
∫
Òq
g (B>s0 + B>Vr1)l

fX(s0 + Vr1)∫
Òq
fX(s0 + Vr)d r

d r1 =
t (l )(V, s0)
t (0)(V, s0)

with t (l )(V, s0) =
∫
Òq
g (B>s0 + B>Vr1)l fX(s0 + Vr1)d r1.

Theorem 2 provides the statistical motivation for the objective function (6) of the conditional variance estimator.

Theorem 2. Under assumptions A.1, A.2 and A.4,

(a) For all s0 ∈ Òp and V = (v1, ..., vq ) such that there exist u ∈ {1, ..., q } with vu ∈ span{B}, L̃(V, s0) > Öar(ε) = η2.
(b) For all s0 ∈ Òp and V ∈ span{B}⊥, L̃(V, s0) = η2.
(c) For all V = (v1, ..., vq ) such that there exist u ∈ {1, ..., q } with vu ∈ span{B}, L(V) > η2.
(d) For all V ∈ span{B}⊥, L(V) = η2

Proof. Let s0 ∈ Òp and V = (v1, ..., vq ) ∈ Òp×q so that vu ∈ span{B} for some u ∈ {1, ..., q }. To obtain (a), observe (4)
yields

L̃(V, s0) = Öar
(
g (B>X) |X = s0 + VV>(X − s0)

)
+ Öar(ε)

= Öar
(
g (B>s0 + B>VV>(X − s0)) |X = s0 + VV>(X − s0)

)
+ η2 > η2 (8)

since B>VV>(X − s0) , 0 w.p. 1, and therefore the first term in (8) has positive variance. For V such that V and B are
orthogonal, B>VV>(X − s0) = 0 and (b) follows. Since s0 is arbitrary yet constant, (c) and (d) follow.

Theorem (2) also has a geometrical motivation. If X is not random, the deterministic function Y = g (B>X) is
constant in all directions orthogonal to B and varies in all other directions. If randomness is introduced, as in model
(1), then the variation in Y stems only from ε in all directions orthogonal to B. In all other directions the variation
comprises of the sum of the variation of ε and of g (B>X). In consequence, the objective function (6) captures the
variation ofY as X varies in the column space of V and is minimised in the directions orthogonal to B.

2.1 | Conditional Variance Estimator (CVE)

The objective function L(V) is well defined and continuous by Theorem 1. Let

Vq = argminV∈S (p,q ) L(V). (9)

Vq is well defined as the minimiser of a continuous function over the compact set S (p, q ). Corollary 3 follows directly
from Theorem 2 and provides the means for identifying the linear projections of the predictors satisfying (1).
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Corollary 3. Under the assumptions of Theorems 1 and 2, the solution of the optimisation problem in (9) is well defined and

(a) span{Vp−k } = span{B}⊥

(b) span{Vp−k }⊥ = span{B}

where k = dim(span{B}).

The minimiser Vp−k in Corollary 3 is not unique since for all C ∈ Òq×p−k such that CC> = Ip−k , L(VC) = L(V) since
L(V) depends on V only through span{V}. Nevertheless, since every minimiser spans the same subspace, span{B} is
uniquely identifiable.

Theorem2 (c) and (d) lead to the proposedmethod for the identification of the sufficient reduction space, span{B},
in (1). Corollary 3 (b) serves as the estimation equation for CVE at the population level.

Definition 4. The Conditional Variance Estimator is defined to be any basis of span{Vq }⊥, where

Bp−q = V⊥q (10)

We can also target B directly by maximising the objective function L(V). The downside of this approach is that X
either needs to be standardised, or the conditioning argument needs to be changed toX = s0+V(V>Σ−1x V)−1V>Σ−1x (X−
s0), or, equivalently, X = s0+PΣ−1x (span{V})

(X−s0), where PM (span{V}) is the orthogonal projection operator with respect
to the inner product 〈x, y〉M = x>My. In either case, the inversion of Σx is required. Our choice of targeting the
orthogonal complement avoids the inversion of Σx, and the method applies to regressions with p > n or p ≈ n .

3 | ESTIMATION OF L (V)

Assume (Yi ,X>i )
>
i=1,...,n is an i.i.d. sample from model (1). We define

di (V, s0) = ‖Xi − Ps0+span{V}Xi ‖
2
2 = ‖Xi − s0 ‖

2
2 − 〈Xi − s0,VV

>(Xi − s0)〉

= ‖(Ip − VV>)(Xi − s0) ‖22 = ‖QV(Xi − s0) ‖22 (11)

where 〈·, ·〉 is the usual inner product in Òp , PV = VV> and QV = Ip − PV. Furthermore, let hn ∈ Ò+ represent the
width of a slice around the subspace s0 + span{V} that satisfies hn → 0, nhp−qn →∞.

Let K : Ò+ → Ò+ be a positive, non increasing, monotone and bounded function (i.e. |K (·) | ≤ M1) with∫
Òq
K ( ‖r‖22 )d r < ∞ for q ≤ p − 1, which we refer to as kernel. Examples of such functions include the rectangu-

lar, K (z ) = cI (z ≤ 1), the Gaussian, K (z ) = c exp(−z 2/2), the exponential, K (z ) = c exp(−z ), and the Epanechnikov
kernel, K (z ) = cmax{(1−z 2), 0}, where c is a constant. A list of admissible kernel functions are given in (Parzen, 1961,
Table 1). For i = 1, . . . , n , we let

wi (V, s0) =
K

(
di (V,s0)
hn

)
∑n
j=1 K

(
dj (V,s0)
hn

) (12)
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The sample based estimate of L̃(V, s0) is defined as

L̃n (V, s0) =
n∑
i=1

wi (V, s0)(Yi − ȳ1(V, s0))2 = ȳ2(V, s0) − ȳ1(V, s0)2 (13)

where ȳl (V, s0) =
∑n
i=1wi (V, s0)Y li , l = 1, 2. The estimate of the objective function L(V) in (6) is defined as

Ln (V) =
1

n

n∑
i=1

L̃n (V,Xi ), (14)

where each data point Xi is a shifting point.

Ln (V) in (14) depends on theweightswi (V, s0) defined in (12). These are not only stochastically dependent but also
random functions of the parameter V, which is also the estimation target. This is novel in nonparametric estimation
and poses challenges in obtaining theoretical properties of the estimator, as the standard probability tools do not
apply.

To obtain insight as to the choice of L̃n (V, s0) in (13), we consider the rectangular kernel, K (z ) = 1{z≤1} . In this
case, L̃n (V, s0) computes the empirical variance of theYi ’s corresponding to the Xi ’s that are no further than hn away
from the subspace s0 + span{V}, ‖Xi − Ps0+span{V}Xi ‖

2
2 ≤ hn . If a smooth kernel is used, such as the Gaussian in

our simulation studies, then L̃n (V, s0) is also smooth, which allows the computation of gradients required to solve
the optimization problem. We compute the gradient of (13) and (14) for the Gaussian kernel in Theorem 5, which is
proven in the Appendix.

Theorem 5. The gradient of L̃n (V, s0) in (13) is given by

+VL̃n (V, s0) =
1

h2n

n∑
i=1

(L̃n (V, s0) − (Yi − ȳ1(V, s0))2)wi di+Vdi (V, s0) ∈ Òp×q ,

and the gradient of Ln (V) in (14) is

+VLn (V) =
1

n

n∑
i=1

+VL̃n (V,Xi ).

3.1 | Weighted estimation of L(V)

We call the set Ss0,V = {x ∈ Ò
p : ‖x − Ps0+span{V}x‖

2
2 ≤ hn } a slice that depends on both the shifting point s0 and V.

In the estimation of L(V) two different weighting schemes are used:

(a) Within Ss0,V (within a slice). The formula is given by (12) and it is used to calculate (13)
(b) Between Ss0,V (between different slices). Here equal weights 1/n are used to calculate (14)
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The choice of weights can be potentially influential. Especially the between weighting scheme can further be refined
by assigning more weight to slices with more points. This can be realised by altering (14) to:

L
(w )
n (V) =

n∑
i=1

w̃ (V,Xi )L̃n (V,Xi ), (15)

w̃ (V,Xi ) =
∑n
j=1 K (dj (V,Xi )/hn ) − 1∑n
l ,u=1 K (d l (V,Xu )/hn ) − n

=

∑n
j=1,j,i K (dj (V,Xi )/hn )∑n
l ,u=1,l,u K (d l (V,Xu )/hn )

(16)

If a rectangular kernel is used, ∑n
j=1,j,i K (dj (V,Xi )/hn ) is the number of Xj (j , i ) points in the slice corresponding to

L̃n (V,Xi ). Therefore this slice gets higher weight, if the number of Xj points in this slice is larger, i.e. the higher the
number of observations that we use for estimating L(V,Xi ) the higher the accuracy of this estimation. The denomi-
nator in (16) guarantees the weights w̃ (V,Xi ) sum up to one.

Theorem 6. The gradient of L(w )n (V) in (15) is given by

+VL
(w )
n (V) =

n∑
i=1

(
+Vw̃ (V,Xi )L̃n (V,Xi ) + w̃ (V,Xi )+VL̃n (V,Xi )

)
, (17)

where +VL̃n (V,Xi ) is given in (5) and if K (·) is the Gaussian kernel,

+Vw̃ (V,Xi ) = −
1

h2n

∑
j

(
K j ,i∑n

l ,u=1 K l ,u
dj ,i+Vdj ,i − w̃i

n∑
l ,u=1

K l ,u∑n
o,s=1 Ko,s

d l ,u+Vd l ,u

)

with K j ,i = K (dj (V,Xi )/hn ) and dj ,i = dj (V,Xi ).

If (15) and the gradient in (17) is used in the optimisation algorithm in Section 4, we refer to the estimator as
weighted CVE. If (15) and the gradient ∑n

i=1 w̃ (V,Xi )+VL̃n (V,Xi ) is used; i.e., the first summand in (17) is dropped, we
refer to it as partially weighted CVE. The weighted version of CVE is expected to increase the accuracy of the estimator
for unevenly spaced data.

3.2 | Bandwidth selection

The performance of CVE depends crucially on the choice of the bandwidth sequence hn that controls the bias-variance
trade-off: the smaller hn is the lower the bias and the higher the variance and vice versa. Furthermore, the choice of
hn depends on p , q , the sample-size n , and the distribution of X. We assume the bandwidth satisfies the following
conditions:(a) limn→∞ hn = 0 and (b) limn→∞ nh

p−q
n = ∞.

Theorem 7. LetM be a p × p positive definite matrix. Then,

tr(M)
p

= argmins>0 ‖M − s Ip ‖2 (18)

Proof. LetU be the p×p matrix whose columns are the eigenvectors ofM corresponding to its eigenvalues λ1 ≥ . . . ≥
λp > 0. Then,M = Udiag(λ1, ..., λp )U>, which implies ‖M− s Ip ‖22 = ‖diag(λ1, ..., λp ) − s Ip ‖

2
2 =

∑p
l=1
(λl − s)

2. Taking the
derivative with respect to s , setting it to 0 and solving for s obtains (18), since ∑p

l=1
λl = tr(M).

In order to avoid bandwidth dependence on V, we assume the predictors are multivariate normal, so that their
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joint density is approximated by N (µX,σ2Ip ) by Theorem 7, for σ2 = tr(Σx)/p . Under X ∼ Np (µX,σ2Ip ), X̃i = Xi −Xj ∼
Np (0, 2σ

2Ip ) for i , j , where we suppress the dependence on j for notational convenience. Since all data are used as
shifting points, di (V,Xj ) = ‖Xi − Xj ‖22 − (Xi − Xj )

>VV>(Xi − Xj ) = ‖X̃i ‖22 − X̃
>
i
VV>X̃i . Let

nObs = Å
(
#{i ∈ {1, ..., n } : X̃i ∈ spanh {V}}

)
= 1 + (n − 1)P(d1(V,X2) ≤ h) = 1 + (n − 1)P( ‖X̃‖22 − X̃

>VV>X̃ ≤ h) (19)

where spanh {V} = {x ∈ Rp : ‖x − Pspan{V}x‖22 ≤ h } and X̃ = X − ˜̃X, with ˜̃X an independent copy of X. nObs is the
expected number of points in a slice. Given a user specified value for nObs, h is the solution to (19).

Let x ∈ Òp . For any V ∈ S (p, q ) in (3), there exists an orthonormal basis U ∈ Òp×(p−q ) of span{V}⊥ such that
x = Vr1 + Ur2, where r1 = V>x, r2 = U>x and U>V = 0,U>U = Ip−q . Then, X̃ = VR1 + UR2, with R1 = V>X̃ ∼
N (0, 2σ2Iq ),R2 = U>X̃ ∼ N (0, 2σ2Ip−q ), and X̃>VV>X̃ = ‖R1 ‖22 and ‖X̃‖

2
2 = ‖R1 ‖

2
2 + ‖R2 ‖

2
2 . Therefore,

P( ‖X̃‖22 − X̃
>VV>X̃ ≤ h) = P( ‖R2 ‖22 ≤ h) = χp−q

(
h

2σ2

)
, (20)

where χp−q is the cdf of a chi-squared distribution with p − q degrees of freedom. Plugging (20) in (19) obtains

nObs = 1 + (n − 1)χp−q
(
h

2σ2

)
. (21)

Solving (21) for h and Theorem 7 yield

hn (nObs) = χ−1p−q
(
nObs − 1
n − 1

)
2tr(Σ̂x)
p
, (22)

where Σ̂x =
∑
i (Xi − X̄)(Xi − X̄)>/n and X̄ =

∑
i Xi /n .

In order to ascertain hn satisfies conditions (a) and (b) in the beginning of this section, a reasonable choice is to
set nObs = γ(n) for a function γ(·) with γ(n) → ∞, γ(n)/n ≤ 1 and γ(n)/n → 0. For example, nObs = γ(n) = nβ with
β ∈ (0, 1) can be used.

Alternatively, a plug-in bandwidth based on rule-of-thumb rules of the form csn−1/(4+k ), where s is an estimate
of scale and c a number close to 1, such as Silverman’s (c = 1.06, s =standard deviation) or Scott’s (c = 1, s =standard
deviation), used in nonparametric density estimation.

hn = 1.2
2 2tr(Σ̂X)

p

(
n−1/(4+p−q )

)2
(23)

where Σ̂X is the maximum likelihood estimate of Σx. The term 2tr(Σ̂X)/p can be interpreted as the variance of Xi −Xj
and p − q stands for the true dimension k . We use 1.2 as c based on empirical evidence from the simulations. Since
both (22) and (23) yield satisfactory results, we opted against cross validation because of the computational burden
involved.
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4 | OPTIMIZATION ALGORITHM

A Stiefel manifold optimization algorithm is used to obtain the solution of the sample version of the optimization
problem (9). To calculate V̂q in (6) a curvilinear search is used (Zaiwen Wen, 2013; Tagare, 2011), an approach similar
to gradient descend. First an arbitrary starting value V(0) is selected by drawing a p × q matrix from the invariant
measure on S (p, q ); i.e., the uniform distribution on S (p, q ). The Q -component of the QR decomposition of a p × q
matrix with independent standard normal entries follows the invariant measure (Chikuse, 1994). The step-size τ > 0
and tolerance tol > 0 are fixed at the outset.

Result: V(end)

Initialise: V(0), τ = 1, tol = 10−3, γ = 0.5 error = tol + 1, maxit = 50, count = 0;
while error > tol and count ≤ maxit do

• G = +VLn (V(j )) ∈ Òp×q ,W = GV> − VG> ∈ Òp×p

• V(j+1) = (Ip + τW)−1(Ip − τW)V(j )

• error = ‖V(j )V(j )> − V(j+1)V(j+1)> ‖2/
√
2q

if Ln (V(j+1)) > Ln (V(j )) then
V(j+1) ← V(j ); τ ← τγ; error← tol + 1

else
count← count + 1
τ ← τ

γ

end
end

Algorithm 1: Curvilinear search

Zaiwen Wen (2013) showed that the sequence generated by the algorithm converges to a stationary point if
Armijo-Wolfe conditions Arm (2006) are used for determining the stepsize τ . We use simpler conditions to determine
the step size since they are computationally less expensive and exhibit same behavior as the Armijo-Wolfe conditions
in the simulations.

The algorithm is repeated form arbitraryV(0) starting values drawn from the invariant measure on S (p, q ). Among
those, the value at which Ln in (14) is minimal is selected as V̂q .

5 | THEORY

In this section we show that the sample based objective function is weakly consistent for its true value. All proofs are
given in the Appendix.

The summands of L̃n in (13) can be expressed as

ȳl (V, s0) =
t
(l )
n (V, s0)
t
(0)
n (V, s0)

, (24)
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where

t
(l )
n (V, s0) =

1

nh
(p−q )/2
n

n∑
i=1

K (di (V, s0)/hn )Y li (25)

for l = 0, 1, 2.

Theorem 8. Under assumptions A.1, A.3, and nhp−qn →∞,

Öar
(
t
(l )
n (V, s0)

)
→ 0

for t (l )n given in (25), l = 0, 1, 2.

Theorem 9. Under assumptions A.1, A.2, A.4, and hn → 0,

Å

(
1

nh
(p−q )/2
n

n∑
i=1

K

(
di (V, s0)
hn

)
g (B>Xi )l

)
→ t (l )(V, s0)

∫
Òp−q

K ( ‖r‖22 )d r, (26)

Å

(
1

nh
(p−q )/2
n

n∑
i=1

K

(
di (V, s0)
hn

)
εi

)
= 0, (27)

and

Å

(
1

nh
(p−q )/2
n

n∑
i=1

K

(
di (V, s0)
hn

)
ε2i

)
→ η2t (0)(V, s0)

∫
Òp−q

K ( ‖r‖22 )d r (28)

where t (l ) is defined in Theorem 1 for l = 0, 1, 2.

Theorem 10. Under assumptions A.1, A.2, A.3, A.4, hn → 0, nhp−qn →∞ and
∫
Òp−q

K ( ‖r‖22 )d r = 1,

(a) t
(l )
n (V, s0)

L2(Ω)
−→ t (l )(V, s0), for l = 0, 1

(b) t
(2)
n (V, s0)

L2(Ω)
−→ t (2)(V, s0) + η2t (0)(V, s0)

for t (l )n given in (25) and t (l ) defined in Theorem 1, for l = 0, 1, 2.

Theorem 10 follows directly from Theorems 8, 9 and the bias variance decomposition,

Å(t (l )n (V, s0) − t (l )(V, s0))2 =
(
Å(t (l )n (V, s0)) − t (l )(V, s0)

)2
+ Öar

(
t
(l )
n (V, s0)

)
.

Theorem 11. Under A.1, A.2, A.3, A.4, hn → 0 and nhp−qn →∞,

(a) ȳ1(V, s0)
P
−→ µ1(V, s0)

(b) ȳ2(V, s0)
P
−→ µ2(V, s0) + η2

(c) L̃n (V, s0)
P
−→ L̃(V, s0)
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where ȳl (·, ·) is given in (24) and µl (·, ·) in Theorem 1 for l = 1, 2.

Theorems 8-11 lead to Theorem 12 that establishes the consistency of the sample CVE objective function.

Theorem 12. Under A.1, A.2, A.3, A.4, A.5, hn → 0 and nhp−qn →∞, then L̃n (V, s0)
L2(Ω)
−→ L̃(V, s0), and

Ln (V) −→ L(V) in probability

as n →∞ for all V ∈ S (p, q ).

5.1 | A small study of the behaviour of Ln (V)

We explore how accurately the sample version (14) of the objective function estimates the target subspace in an
example. We consider a bivariate normal predictor vector, X = (X1,X2)> ∼ N (0, Σx). We generate the response from
Y = g (B>X) + ε = X1 + ε, with ε ∼ N (0, η2) independent of X. Therefore, k = 1, B = (1, 0)>, g (z ) = z ∈ Ò in (1).

Applying Theorem 1 obtains

µl (V, s0) =
∫
Ò2
g (B>x)l fX|X∈s0+span{V}(x)dx =

∫
Ò2
(B>x)l fX|X∈s0+span{V}(x)dx (29)

In the Appendix we show that, under this setting, (5) is given by

fX|X∈s0+span{V}(x) =

1
σψ(

r1−α
σ ) if x ∈ s0 + span{V}, r1 = V>(x − s0) ∈ Ò

0 otherwise
(30)

where ψ(z ) is the density of a standard normal variable. Inserting (30) in (29) yields

∫
Ò
(B>s0 + B>Vr1)l

1

σ
ψ(
r1 − α

σ
)dr1 =


B>s0 + B>Vα l = 1

(B>s0)2 + 2(B>s0)(B>V)α + (B>V)2(σ2 + α2) l = 2

for V ∈ Ò2×1, σ2 = (V>Σ−1x V)−1 and α is computed in the Appendix. Applying Theorem 1, using the definitions (4)
and (6), yields L̃(V, s0) = µ2(V, s0) − µ1(V, s0)2 + η2 = (B>V)2σ2 + η2, so that

L(V) = Å
(
L̃(V,X)

)
= (B>V)2σ2 + η2 = (B

>V)2

V>Σ−1x V
+ η2 (31)

From (31) we can easily see that L(V) attains its minimum when V ⊥ B. Also, if Σx = I2, the maximum of
L(V) is attained at V = B. To visualise the behaviour of L̃n (V) as the sample size increases, we parametrise V by
V(θ) = (cos(θ), sin(θ))>, θ ∈ [0, π]. Since B = (1, 0)>, the minimum of L̃(V) is at V(π/2) = (0, 1)> , which is orthogonal
to B.

The true L(V(θ)) and its estimates Ln (V(θ)) are plotted for samples of different size n in Fig 1. Ln (V(θ)) approxi-
mates L(V) fast and attains its minimum at the same value as L(V) even for the smallest sample of 10 observations.

Assumptions A.4 and A.5 are violated in this example, which suggests that the proposed estimator of CVE applies
under weaker assumptions.
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F IGURE 1 Solid black line is L(V(θ)) = cos(θ)2 + 0.12, colored is Ln (V(θ)), θ ∈ [0, π], n = 10, 50, 100, 500. The
vertical black line is at θ = π/2

6 | SIMULATION STUDIES

Wecompare the estimation accuracy of CVEwith the forwardmodel based SDRmethods, meanOPG (meanOPG), mean
MAVE (meanMAVE) (Weiqiang and Yingcun, 2019), rOPG (rOPG), rmave (rmave) (Xia et al., 2002; Li, 2018), and pHd (Li,
1992; Cook and Li, 2002), and the inverse regression based methods, SIR Li (1991) and SAVE Cook and Weisberg
(1991). The dimension k is assumed to be known throughout.

We report results for CVE using the “plug-in” bandwidth in (23) and three different CVE versions. CVE is obtained
by using m = 10 arbitrary starting values in the optimization algorithm and optimizing (14) as described in Section 4.
rCVE, or refined weighted CVE, is obtained by using one starting value,V (0) equal to the optimiser of CVE, and using
(15) in the optimization algorithm in Section 4, with the partially weighted gradient as described in Section 3.1. wCVE,
or weighted CVE,is obtained by optimizing (15) with partially weighted gradient as described in sections 3.1 and 4.
Methods rOPG and rMAVE refer to the original refined OPG and refined MAVE algorithms published in Xia et al.
(2002). They are implemented using the R code in Li (2018) with nit = 25 (number of iterations is 25 since empirically
the algorithm seems to have converged). The dr package is used for the SIR, SAVE and pHd calculations, and the
MAVE package for mean OPG and mean MAVE. The source code for CVE can be found at https://git.art-ist.cc/
daniel/CVE. For M7 the results of rOPG and rmave are not reported because the code frequently produces an error
message that a matrix is not invertible.

Table 1 lists the seven models (M1-M7) we consider. Throughout, we set p = 20, b1 = (1, 1, 1, 1, 1, 1, 0, ..., 0)>/
√
6,

b2 = (1,−1, 1,−1, 1,−1, 0, ..., 0)>/
√
6 ∈ Òp for M1-M5. For M6, b1 = e1, b2 = e2 and b3 = ep , and for M7 b1, b2, b3

are like in M6 and b4 = e3 where ej denotes the j unit vector in Òp . The error term ε is independent of X for all
models. In M2, M3, M4, M5 and M6, ε ∼ N (0, 1). For M1 and M7, ε is distributed as generalised normal distribution
Nadarajah (2005) with location 0, shape-parameter 0.5 for M1, and shape-parameter 1 for M7 (Laplace distribution),
and for both the scale-parameter is chosen such that Öar(ε) = 0.25.

https://git.art-ist.cc/daniel/CVE
https://git.art-ist.cc/daniel/CVE
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TABLE 1 Models

Name Model X distribution k n

M1 Y = cos(b>1 X) + ε X ∼ Np (0, Σ) 1 100

M2 Y = cos(b>1 X) + 0.5ε X ∼ Z 1pλ + Np (0, Ip ) 1 100

M3 Y = 2 log( |b>1 X | + 2) + 0.5ε X ∼ Np (0, Ip ) 1 100

M4 Y = (b>1 X)/(0.5 + (1.5 + b>2 X)2) + 0.5ε X ∼ Np (0, Σ) 2 200

M5 Y = cos(πb>1 X)(b>2 X + 1)2 + 0.5ε X ∼ U ([0, 1]p ) 2 200

M6 Y = (b>1 X)2 + (b>2 X)2 + (b>3 X)2 + 0.5ε X ∼ Np (0, Ip ) 3 200

M7 Y = (b>1 X)(b>2 X)2 + (b>3 X)(b>4 X) + ε X ∼ t3(Ip ) 4 400

The variance-covariance structure of X in models M1 and M4 satisfies Σi ,j = 0.5|i−j | for i , j = 1, . . . , p . In M5,
X ∼ U ([0, 1]p ); i.e., uniform with independent entries on the p-dimensional hyper-cube. In M7, X is multivariate t -
distributed with 3 degrees of freedom. The link functions of M4 and M7 are studied in Xia et al. (2002), but we use
p = 20 instead of 10 and a non identity covariance structure for M4 and the t -distribution instead of normal for M7.
In M2, Z ∼ 2Bernoulli(pmix)−1 ∈ {−1, 1}, where 1q = (1, 1, ..., 1)> ∈ Òq , mixing probability pmix ∈ [0, 1] and dispersion
parameter λ > 0. For 0 < pmix < 1, X has a mixture normal distribution, where pmix is the relative mode height and λ
is a measure of mode distance.

We set q = p − k and generate r = 100 replications of models M1-M7. We estimate B using the ten SDR
methods. The accuracy of the estimates is assessed using er r = ‖PB − PB̂ ‖2/

√
2k ∈ [0, 1], where PB = B(BB>)−1B>

is the orthogonal projection matrix on span{B}. The factor
√
2k normalises the distance, with values closer to zero

indicating better agreement and values closer to one indicating strong disagreement.

The box-plots of the r = 100 estimation errors for each method are displayed in Figures 2 - 5. In Table 2 the
means and standard deviations of err for M1-M7 (for M2 pmi x = 0.3 and λ = 1) are reported For models M1, M5, and
M7, CVE is approximately on par with MAVE, its main competitor, as can be seen in Figs 2 - 5. SIR and SAVE are not
competitive throughout our experiments. SIR, in particular, is expected to fail in models M1-M3, andM6 since Å(Y |X)
is even.

CVE shows its advantage in M3 [see Figure 2] and in M2 [see Figure 5]. meanOPG and meanMAVE are slightly more
accurate than CVE in M4 [see Figure 3] and M6 [see Figure 4]. In M1 [see Figure 2], M5 [see Figure 3], and M7
[see Figure 4] CVE, meanOPG and meanMAVE are roughly on par. In M1, M3, M5, and M6 we observe a discrepancy be-
tween meanOPG, meanMAVE and rOPG, rmave; that is, the raw implementation of the refined OPG andMAVE algorithms
perform worse than the implementation in the R package.

In Fig. 5, box-plots for all combinations of pmix ∈ {0.3, 0.4, 0.5} and λ ∈ {0, 0.5, 1, 1.5} are presented but the
reference methods are restricted to meanOPG and meanMAVE, since the others are not competitive. CVE performs
better than all competing methods and is the only method with consistently smaller errors when the two modes
are further apart (λ ≥ 1) regardless of the mixing probability pmix. The performance of both meanOPG and meanMAVE

worsens as one moves from left to right row-wise. The mixing probability, pmix, has no noticeable effect on the
performance of any method; i.e., the plots are very similar column-wise. In sum, MAVE’s performance deteriorates
as the bimodality of the predictor distribution becomes more distinct. In contrast, CVE is unaffected.and appears to
have an advantage over MAVE when the predictors have mixture distributions, the link function is even about the
midpoint of the two modes, and B is not orthogonal to the line connecting the two modes. CVE is the only method
that estimates themean subspace reliably in modelM2 (er r ≈ 0.4 to 0.5), whereasMAVEmisses it completely (er r ≈ 1).
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These results indicate that CVE is often approximately on par, and can perform much better than MAVE depending
on the predictor distribution and the link function.

TABLE 2 Mean and standard deviation of estimation errors

Model CVE wCVE rCVE meanOPG rOPG meanMAVE rmave pHd sir save

M1 mean 0.3827 0.4414 0.4051 0.6220 0.9876 0.5099 0.9840 0.8278 0.9875 0.9788

M1 sd 0.1269 0.1595 0.1329 0.1879 0.0223 0.1800 0.0295 0.1206 0.0243 0.0334

M2 mean 0.4572 0.4992 0.4658 0.8987 0.9332 0.8905 0.9242 0.9000 0.9783 0.9781

M2 sd 0.1038 0.1524 0.0989 0.0908 0.0683 0.0983 0.0897 0.0735 0.0278 0.0318

M3 mean 0.6282 0.7509 0.6371 0.7847 0.9644 0.7576 0.9674 0.6964 0.9647 0.9519

M3 sd 0.2354 0.2262 0.2181 0.2201 0.0667 0.2435 0.0609 0.1626 0.0587 0.0650

M4 mean 0.5663 0.5897 0.5554 0.4071 0.4026 0.4361 0.3905 0.7772 0.5824 0.9727

M4 sd 0.1239 0.1246 0.1298 0.0814 0.0609 0.0997 0.0584 0.0662 0.0951 0.0202

M5 mean 0.4429 0.5604 0.4779 0.4058 0.3737 0.3929 0.3750 0.7329 0.6374 0.9730

M5 sd 0.0891 0.1233 0.0976 0.1022 0.0680 0.0894 0.0871 0.0832 0.0968 0.0186

M6 mean 0.3828 0.3027 0.3230 0.1827 0.4632 0.1656 0.4863 0.4978 0.9129 0.8236

M6 sd 0.1006 0.0748 0.1098 0.0289 0.1717 0.0252 0.1676 0.0601 0.0420 0.0518

M7 mean 0.6856 0.5050 0.5651 0.5694 NA 0.5482 NA 0.8536 0.8133 0.8699

M7 sd 0.0588 0.0862 0.0879 0.1122 NA 0.1271 NA 0.0354 0.0341 0.0342

F IGURE 2 Left panel: M1, p = 20, n = 100; Right panel: M3, p = 20, n = 100

Furthermore we estimate the dimension k via cross-validation, following the approach in Xia et al. (2002) , with

k̂ = argminl=1,...,p CV (l ), (32)

where CV (l ) = ∑
i (Yi − ĝ

−i (B̂>
l
Xi ))2/n , ĝ−i (·) is estimated from the dataset (Yj , B̂>l Xj )j=1,...,n;j,i using multivariate

adaptive regression splines (Friedman, 1991) implemented in the R-package mda, and B̂l = V̂⊥
p−l

is any basis of the
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F IGURE 3 Left panel: M4, p = 20, n = 200; Right panel: M5 p = 20, n = 200

F IGURE 4 Left panel: M6, p = 20, n = 200; Right panel: M7 p = 20, n = 400
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F IGURE 5 M2, p = 20, n = 100

orthogonal complement of V̂p−l , with

V̂p−l = argminV∈S (p,p−l ) Ln (V).

For a given l , we calculate B̂l from the whole data set and predictYi by Ŷi ,l = ĝ−i (B̂>l Xi ). For l = p , B̂p = Ip . The results
for the seven models are reported in Table 3.

TABLE 3 Number of times dimension k is correctly estimated in 100 replications

M1 M2 M3 M4 M5 M6 M7

CVE 83 41 88 62 46 74 19

MAVE 67 0 14 76 60 57 21

7 | HITTERS DATA SET

The Hitters data were analysed by Xia et al. (2002). The response is Y = log(salary) and the covariate vector is the
16-dimensional X = (x1, ..., x16)>. Its components are times at bat x1, hits x2, home runs x3, runs x4, runs batted in x5
and walks x6 in 1986, years in major leagues x7, times at bat x8, hits x9, home runs x10, runs x11, runs batted in x12
and walks x13 during their entire career up to 1986, put-outs x14, assistances x15 and errors x16. Following Xia et al.
(2002), we standardise X by subtracting the mean and rescaling column-wise so that each predictor has unit variance.
The same is done forY . Furthermore, the 7 outliers are removed as in Xia et al. (2002).
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TABLE 4 Mean cross-validation error

l 1 2 3 4 5

CVE 0.308 0.218 0.275 0.327 0.371

MAVE 0.370 0.277 0.339 0.413 0.440

Table 4 reports the average cross validation mean squared error over l = 1, . . . , 5. Both CVE and mean MAVE
estimate the dimension to be 2.

Following Xia et al. (2002), we plot the response against the estimated directions in Fig. 6. CVE and MAVE pick

F IGURE 6 Y against b>1 X and b>2 X

up the same pattern: the response appears to be linear in one direction and quadratic in the second.

Based on the scatterplots in Figure 6, we fit the same models for both the CVE and MAVE predictors. For CVE,
the fitted regression is

Ŷ = 0.39578 + 0.33724(b>1 X) − 0.08066(b
>
1 X)

2 + 0.29126(b>2 X) (33)

with R 2 = 0.7975, and for MAVE

Ŷ = 0.39051 + 1.32529(b>1 X) − 0.55328(b
>
1 X)

2 + 0.49546(b>2 X) (34)

with R 2 = 0.7859. Both models (33) and (34) have about the same fit as measured by R 2.
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8 | DISCUSSION

In this paper the novel conditional variance estimator (CVE) for the mean subspace is introduced. We present its
geometrical and theoretical foundation and propose an estimation algorithm with assured convergence. CVE requires
weak assumptions on the covariates, such as continuous density with compact support. The latter is sufficient but
not necessary to show the sample objective function is consistent.

MAVE estimates the sufficient dimension reduction targeting both the reduction and the link function g in (1).
CVE only targets the reduction and does not require estimation of the link function, which may explain why CVE has
an advantage over MAVE, its direct competitor, in some regression settings. For example, in unreported simulations
for model M2, CVE exhibits similar and better performance across different link functions (cos, exp, etc) for fixed λ,
whereas the performance of MAVE is very uneven. Based on our simulations, it appears that when the link function
is even and the predictor distribution is bimodal, CVE is more accurate than MAVE. Moreover, CVE does not require
the inversion of the predictor covariance matrix and can be applied to regressions with p ≈ n or p > n .

The theoretical challenge in deriving the statistical properties of CVE arises from the novelty of its definition that
involves random weights that depend on the parameter to be estimated. This precludes the usage of most standard
probabilistic arguments for establishing consistency of the subspace estimates. A complete study of the asymptotic
properties of CVE, optimal bandwidth selection and its extension to central space estimation are under investigation.
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Then,

P(X ∈ s0 + spanh {V}) =
∫
s0+spanh {V}

fX(x)dx =
∫
spanh {V}

fX(s0 + x)dx

=

∫
Òq

∫
‖r2 ‖22≤h

fX(s0 + Vr1 +Ur2)d r2d r1

= Vol( ‖r2 ‖22 ≤ h)
∫
Òq
fX(s0 + Vr1 +Uξh )d r1

where the last equality follows from the mean value theorem with ξh ∈ B
p−q
h
(0), Bp−q

h
(0) is the p − q dimensional ball

at the origin with radius h.
The numerator of (35) equals∫

{z≤x}∩{z∈s0+spanh {V}}
fX(z)dz =

∫ y1

−∞

...

∫ yq

−∞

∫
‖r2 ‖22≤h

fX(s0 + Vr1 +Ur2)d r2d r1

= Vol( ‖r2 ‖22 ≤ h)
∫ y1

−∞

...

∫ yq

−∞

fX(s0 + Vr1 +Uξ̃h )d r1

where (y1, ..., yq )> = V>(x − s0) and ξ̃h ∈ B
p−q
h
(0). Observe that if x < s0 + span{V}, (y1, ..., yq )> = 0 and therefore

the cdf is constant and the density is 0. Substituting the numerator and denominator into (35) yields

lim
h↓0

∫ y1
−∞
...

∫ yq
−∞

fX(s0 + Vr1 +Uξ̃h )d r1∫
Òq
fX(s0 + Vr1 +Uξh )d r1

(36)

By the dominated convergence theorem, the limit can be passed under the integral, separately for the numerator and
denominator since one can choose M > 0 such that the integral is negligible outside of BM (0). On the compact set
the continuity of the density obtains an integrable majorant. Since both the numerator and denominator converge,
(36) converges to ∫ y1

−∞
...

∫ yq
−∞

fX(s0 + Vr1)d r1∫
Òq
fX(s0 + Vr1)d r1

Taking the derivative results in (5). Due to the independence ofX and ε in (1), Öar(Y |X ∈ s0+span{V}) = Öar(g (B>X) |X ∈
s0 + span{V}) + Öar(ε). Using the density formula in (5) we obtain (7).

The parameter integral Heuser (1995),

t (l )(V, s0) =
∫
Òq
g (B>s0 + B>Vr)l fX(s0 + Vr)d r =

∫
Òq
g̃ (V, s0, r)d r

is well defined and continuous if (1) g̃ (V, s0, ·) is integrable for all V, s0, (2) g̃ (·, ·, r) is continuous for all r, and (3)
there exists an integrable dominating function of g̃ that does not depend on V and s0 [see Heuser (1995) p. 101].
Furthermore t (l )(V, s0) =

∫
K
g̃ (V, s0, r)d r for some compact set K since supp(fX) is compact. The function g̃ (V, s0, r) is

continuous in all inputs by the continuity of g and fX, and therefore it attains a maximum. In consequence, all three
conditions are satisfied so that t (l )(V, s0) is well defined and continuous.

Next µl (V, s0) = t (l )(V, s0)/t (0)(V, s0) is continuous since t (0)(V, s0) > 0 for all s0 ∈ supp(fX) by the continuity of
fX and Σx > 0. Then, L̃(V, s0) in (7) is continuous. Since L(V) is a parameter integral, it is well defined and continuous
following the same arguments as above.
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Proof of Theorem 8: Since (X>
i
,Yi ) are iid draws from the joint distribution of (X>,Y ),

Öar
(
t
(l )
n (V, s0)

)
=

1

nh
p−q
n

Öar
(
K

(
d1(V, s0)
hn

)
Y l1

)
≤

1

nh
p−q
n

Å

(
K

(
d1(V, s0)
hn

)2
Y 2l
1

)
≤
Å(Y 2l

1 )M
2
2

nh
p−q
n

→ 0

where the last inequality derives from the boundedness of the kernel, K (·) ≤ M2.

Proof of Theorem 9: Let U be an orthonormal basis of the orthogonal complement of span{V} and x = s0 + Vr1 + Ur2,
where r1 = V>(x − s0) ∈ Òq , r2 = U>(x − s0) ∈ Òp−q , and QVx = (Ip − PV)x = Ur2.

Å

(
1

nh
(p−q )/2
n

n∑
i=1

K

(
di (V, s0)
hn

)
g (B>Xi )l

)
=

1

h
(p−q )/2
n

Å

(
K

(
di (V, s0)
hn

)
g (B>X1)l

)
=

1

h
(p−q )/2
n

∫
Òp
K

(
‖QV(x − s0) ‖22

hn

)
g (B>x)l fX(x)dx

=
1

h
(p−q )/2
n

∫
Òp
K

(
‖QVx‖22
hn

)
g (B>s0 + B>x)l fX(s0 + x)dx

=
1

h
(p−q )/2
n

∫
Òq

∫
Òp−q

K

(
‖
r2
√
hn
‖22

)
g (B>s0 + B>Vr1 + B>Ur2)l fX(s0 + Vr1 +Ur2)d r2d r1

Applying Fubini’s Theorem and substituting r̃2 = r2/
√
hn , d r2 = h(p−q )/2n d r̃2 yields∫

Òq

∫
Òp−q

K ( ‖r2 ‖22 )g (B
>s0 + B>Vr1 +

√
hnB>Ur2)l fX(s0 + Vr1 +

√
hnUr2)d r2d r1

By Assumption A.3,Y is integrable. Thus, there exists an M > 0 such that the integral outside of Bp
M
(0) is negligible.

Using similar arguments as in the proof of Theorem 1, the limit can be pulled inside the integral and also inside the
functions because of the continuity of g (·) and fX(·), obtaining (26). Eqns. (27) and (28) follow directly from (26) with
l = 0 from the independence of Xi and εi .

Proof of Theorem 11: Since L2(Ω) convergence implies convergence in probability, (a) and (b) follow from (24), The-
orem 10 and the continuous mapping theorem. (c) follows from (a) and (b), Theorem 1 and L̃n (V, s0) = ȳ2(V, s0) −
ȳ1(V, s0)2.

Proof of Theorem 12: By (14) and (6),

|Ln (V) − L(V) | ≤
1

n

∑
i

|L̃n (V,Xi ) − L̃(V,Xi ) | +
1

n

∑
i

|L̃(V,Xi ) − Å(L̃(V,X)) | (37)

The second term on the right hand side goes to 0 almost surely by the strong law of large numbers. For the first term



22 Lukas Fertl, Efstathia Bura

observe that

t
(l )
n (V,Xi ) |(Xi = s0) =

1

nh
(p−q )/2
n

K

(
di (V, s0)
hn

)
Y li +

1

nh
(p−q )/2
n

∑
j,i

K

(
dj (V, s0)
hn

)
Y lj

L2(Ω)
−→ t (l )(V, s0)

by similar arguments as in the proof of Theorems 8 and 9, since the first term of the right hand side converges to 0
by nh(p−q )/2n → ∞. Therefore, Zn (V, s0) := L̃n (V,Xi ) |(Xi = s0) −→ L̃(V, s0) in probability by the continuous mapping
theorem.

Under Assumption A.5, L̃n (V, s0) ≤ 4M 2
1 , Zn (V, s0) ≤ 4M

2
1 and Ln (V, s0) ≤ 4M 2

1 , so that Zn (V, s0) is uniformly

integrable. Therefore, Zn (V, s0)
L2(Ω)
−→ L̃(V, s0), which implies convergence in L1(Ω). Let Z̃n (s0) = Å |Zn (V, s0)− L̃(V, s0) |.

By Assumption A.5, Z̃n (s0) ≤ 32M 2
1 . Next,

lim
n→∞

Å

(
1

n

∑
i

|L̃n (V,Xi ) − L̃(V,Xi ) |
)
= lim
n→∞

Å
(
|L̃n (V,Xi ) − L̃(V,Xi ) |

)
= lim
n→∞

Å
(
Å |L̃n (V,Xi ) − L̃(V,Xi ) | |Xi = s0

)
= lim
n→∞

Å
(
Z̃n (X)

)
(38)

Z̃n (s0) → 0 for all s0, so that Z̃n (X) → 0 almost surely. By dominated convergence, the limit can be swapped with the
expectation in (38) which yields that the limit is 0. Therefore, the first term goes to 0 in L1(Ω) and the second almost
surely in the right hand side of (37).

Proof of Theorem 5: From (12) and (13) we have L̃n = ȳ2 − ȳ
2
1 where ȳl =

∑
i wiY

l
i
for l = 1, 2. We suppress the

dependence on V and s0 and write wi = Ki /
∑
j K j . For the Gaussian kernel, +Ki = (−1/h2n )Ki di+di and +wi =(

Ki di+di (
∑
j K j ) − Ki

∑
j K j dj+dj

)
/(

∑
j K j )

2. Then

+ȳl = −
1

h2n

∑
i

Y li

(
Ki di+di − Ki (

∑
j K j dj+dj )

)
(
∑
j K j )

2
= −

1

h2n

∑
i

Y li wi
©­«di+di −

∑
j

wj dj+dj
ª®¬

= −
1

h2n

∑
i

Y li wi di+di −
∑
j

Y lj wj
∑
i

wi di+di = −
1

h2n

∑
i

(Y li − ȳl )wi di+di

Then, +L̃n = (−1/h2n )(+ȳ2−2ȳ1+ȳ1) = (−1/h2n )
∑
i (Y

2
i
− ȳ2−2ȳ1(Yi − ȳ1))wi di+di = (1/h

2
n )(

∑
i

(
L̃n − (Yi − ȳ1)

2
)
wi di+di ),

sinceY 2
i
− ȳ2 − 2ȳ1(Yi − ȳ1) = (Yi − ȳ1)

2 − L̃n .

Derivation of (30): By Theorem 1, the density, dropping the normalization constant, is

fX|X∈s0+span{V}(x) ∝ fX(s0 + Vr1) ∝ exp
(
−
1

2
(s0 + r1V)>Σ−1x (s0 + r1V)

)
∝ exp

(
−
1

2

(
2r1V>Σ−1x s0 + r 21V

>Σ−1x V
))
= exp

(
−

1

2σ2

(
2r1σ

2V>Σ−1x s0 + r 21
))

∝ exp
(
−

1

2σ2
(r1 − α)

2

)
, (39)

where the square is completed in (39) with σ2 = 1/(V>Σ−1x V) and α = −σ2V>Σ−1s0. Let ψ(z ) be the density of a
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standard normal variable. Then,

fX|X∈s0+span{V}(x) =

1
σψ(

r1−α
σ ) if x ∈ s0 + span{V}, r1 = V>(x − s0) ∈ Ò

0 otherwise
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